Regularization of the Reissner-Nordström black hole

  • S. Habib MazharimousaviEmail author
  • M. Halilsoy
Regular Article


An inner de Sitter region is glued smoothly and consistently with an outer Reissner-Nordström (RN) spacetime on a spherical thin shell. Mass and charge of the outer RN spacetime are defined by the de Sitter and shell parameters. The radius of the shell plays the role of a cut-off which, by virtue of the regular de Sitter interior removes the singularity at r = 0. The topology of the inner de Sitter region with the radius of the thin shell becomes compact. For stability the perturbed shell is shown to satisfy a modified polytropic equation of state which has vanishing mass and pressure on the unperturbed shell as dictated by the junction conditions.


  1. 1.
    G. Darmois, Les equations de la gravitation einsteinienne, in Mémorial de Sciences Mathématiques, Fascicule XXV (1927) Chapt. VGoogle Scholar
  2. 2.
    W. Israel, Nuovo Cimento 66, 1 (1966)CrossRefGoogle Scholar
  3. 3.
    M. Visser, Phys. Rev. D 39, 3182 (1989)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    J. Maldacena, L. Susskind, Fortschr. Phys. 61, 781 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)ADSCrossRefGoogle Scholar
  7. 7.
    A.V. Vilenkin, P.I. Fomin, Nuovo Cimento A 45, 59 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Vilenkin, P.I. Fomin, ITP Report No. ITP-74-78R (1974)Google Scholar
  9. 9.
    O.B. Zaslavskii, Phys. Rev. D 70, 104017 (2004)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 83, 124005 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    N. Uchikata, S. Yoshida, T. Futamase, Phys. Rev. D 86, 084025 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    V.P. Frolov, M.A. Markov, V.F. Mukhanov, Phys. Rev. D 41, 383 (1990)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    V.P. Frolov, Phys. Rev. D 94, 104056 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Bardeen, in Proceedings of the International Conference GR 5, USSR, Tbilisi, Georgia, 1968, p. 174Google Scholar
  15. 15.
    A. Borde, Phys. Rev. D 55, 7615 (1997)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    John A. Wheeler, Geometrodynamics (Academic Press, 1962)Google Scholar
  17. 17.
    R.A. Matzner, N. Zamorano, V.D. Sandberg, Phys. Rev. D 19, 2821 (1979)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    W.B. Bonnor, P.A. Vickers, Gen. Relativ. Gravit. 13, 29 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    M. Azam, S.A. Mardan, I. Noureen, M.A. Rehman, Eur. Phys. J. C 76, 315 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    F.R. Klinkhamer, C. Rahmede, Phys. Rev. D 89, 084064 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    F.R. Klinkhamer, Acta Phys. Pol. B 45, 5 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    F.R. Klinkhamer, Mod. Phys. Lett. A 29, 1430018 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    F.R. Klinkhamer, Mod. Phys. Lett. A 28, 1350136 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesEastern Mediterranean UniversityFamagusta, North CyprusTurkey

Personalised recommendations