Advertisement

Heat source identification of some parabolic equations based on the method of fundamental solutions

  • Kamal Rashedi
  • Aydin Sarraf
Regular Article

Abstract.

In this paper, we consider inverse problems of the heat conduction process in one and two-dimensional homogeneous bodies of finite size, subject to the given initial and boundary conditions. The considered inverse problems are severely ill-posed since their solutions; if they exist, they do not depend continuously on the input data. We obtain stable solutions for several inverse problems by proposing a meshless regularization technique based on the combination of the method of fundamental solutions and the Tikhonov’s regularization method. In particular, we use the given information at the terminal state to estimate the space-dependent heat source in the one-dimensional case and the space- and time-dependent heat source in the two-dimensional case. Numerical results demonstrate high accuracy and low computational cost.

References

  1. 1.
    J.V. Beck, B. Blackwell, C. Clair, Inverse Conduction Ill-posed Problems (New York, Wiley, 1985)Google Scholar
  2. 2.
    V.T. Borukhov, P.N. Vabishchevich, Comput. Phys. Commun. 126, 32 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences (Springer, New York, 1998)Google Scholar
  4. 4.
    A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer, 2011)Google Scholar
  5. 5.
    K. Rashedi, H. Adibi, M. Dehghan, Inverse Probl. Sci. Eng. 22, 1077 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Rashedi, H. Adibi, J. Amani Rad, K. Parand, Eng. Anal. Bound. Elem. 40, 1 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A.A. Samarskii, A.N. Vabishchevich, Computational Heat Transfer (Wiley, Chichester, 1995)Google Scholar
  8. 8.
    A. Shidfar, A. Babaei, A. Molabahrami, Appl. Math. Comput. 60, 1209 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Ebel, T. Davitashvili, Air Water and Soil Quality Modelling for Risk and Impact Assessment (Springer, Dordrecht, 2007)Google Scholar
  10. 10.
    M. Dehghan, Numer. Methods Partial Differ. Equ. 22, 220 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Dehghan, Math. Comput. Simul. 61, 89 (2003)CrossRefGoogle Scholar
  12. 12.
    M. Dehghan, Appl. Num. Math. 37, 489 (2001)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, J. Comput. Appl. Math. 110, 115 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Shamsi, M. Dehghan, Numer. Methods Partial Differ. Equ. 28, 74 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Dehghan, Numer. Methods Partial Differ. Equ. 18, 193 (2002)CrossRefGoogle Scholar
  16. 16.
    G.W. Batten Jr., Math. Comput. 17, 405 (1963)CrossRefGoogle Scholar
  17. 17.
    J.R. Cannon, Quart. Appl. Math. 21, 155 (1963)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Dehghan, M. Shamsi, Numer. Methods Partial Differ. Equ. 22, 1255 (2006)CrossRefGoogle Scholar
  19. 19.
    J.H. Cushman, T.R. Ginn, Transp. Porous Media 13, 123 (1993)CrossRefGoogle Scholar
  20. 20.
    J.R. Cannon, S.P. Esteva, J. Van der Hoek, SIAM J. Numer. Anal. 24, 499 (1987)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J.R. Cannon, Y. Lin, J. Math. Anal. Appl. 145, 470 (1990)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J.R. Cannon, J. Van Der Hoek, Ann. Mat. Pura Appl. 130, 385 (1982)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J.R. Cannon, Y. Lin, S. Wang, Meccanica 27, 85 (1992)CrossRefGoogle Scholar
  24. 24.
    J.R. Cannon, H.M. Yin, Differ. Equ. 79, 266 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    J. Chabrowski, Nagoya Math. J. 93, 109 (1984)MathSciNetCrossRefGoogle Scholar
  26. 26.
    W.A. Day, Quart. Appl. Math. 40, 319 (1982)MathSciNetCrossRefGoogle Scholar
  27. 27.
    K. Deng, Quart. Appl. Math. 50, 517 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    N.I. Ionkin, Differ. Equ. 15, 911 (1980)Google Scholar
  29. 29.
    N.I. Ionkin, E.I. Moiseev, Differ. Equ. 15, 915 (1980)Google Scholar
  30. 30.
    B. Kawohl, Quart. Appl. Math. 45, 751 (1987)CrossRefGoogle Scholar
  31. 31.
    Y. Lin, Parabolic partial differential equations subject to non-local boundary conditions, PhD Dissertation, Department of Pure and Applied Mathematics, Washington State University, 1988Google Scholar
  32. 32.
    Y. Lin, S. Xu, H.M. Yin, Int. J. Math. Sci. 20, 147 (1997)CrossRefGoogle Scholar
  33. 33.
    W. Rundell, Appl. Anal. 10, 231 (1980)CrossRefGoogle Scholar
  34. 34.
    N.I. Yurchuk, Differ. Equ. 22, 1457 (1986)Google Scholar
  35. 35.
    A.I. Kozhanov, R.R. Safiullova, J. Inverse Ill-Posed Probl. 18, 1 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Erdem, Math. Methods Appl. Sci. 38, 1393 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J. R. Cannon, The One-dimensional Heat Equation (Addison-Wesley, Reading, MA, 1984)Google Scholar
  38. 38.
    M. Dehghan, Chaos, Solitons Fractals 32, 661 (2007)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Dehghan, M. Tatari, Numer. Methods Partial Differ. Equ. 23, 984 (2007)CrossRefGoogle Scholar
  40. 40.
    J.A. Rad, K. Rashedi, K. Parand, H. Adibi, Eng. Comput. 33, 547 (2017)CrossRefGoogle Scholar
  41. 41.
    A. Karageorghis, D. Lesnic, L.Marin, Inverse Probl. Sci. Eng. 19, 309 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    E. Kita, N. Kamiyia, Adv. Eng. Softw. 24, 3 (1995)CrossRefGoogle Scholar
  43. 43.
    E. Trefftz, Ein Gegenstuck zum Ritzschen Verfahren, in 2er Intern. Kongr. Techn. Mech. Zurich (1926) pp. 131--137Google Scholar
  44. 44.
    B.T. Johansson, D. Lesnic, T. Reeve, Inverse Probl. Sci. Eng. 19, 659 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    T. Mynt-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers (Birkhauser, 2007)Google Scholar
  46. 46.
    B.T. Johansson, D. Lesnic, T. Reeve, Appl. Math. Model. 35, 4367 (2011)MathSciNetCrossRefGoogle Scholar
  47. 47.
    B.T. Johansson, D. Lesnic, T. Reeve, Int. J. Comput. Math. 88, 1697 (2011)MathSciNetCrossRefGoogle Scholar
  48. 48.
    B.T. Johansson, D. Lesnic, T. Reeve, Int. J. Comput. Math. 89, 1555 (2012)MathSciNetCrossRefGoogle Scholar
  49. 49.
    B.T. Johansson, D. Lesnic, T. Reeve, Int. Commun. Heat Mass 39, 887 (2012)CrossRefGoogle Scholar
  50. 50.
    T. Reeve, B.T. Johansson, Eng. Anal. Bound. Elem. 37, 569 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    J. Wen, M. Yamamoto, T. Wei, Inverse Probl. Sci. Eng. 21, 485 (2013)MathSciNetCrossRefGoogle Scholar
  52. 52.
    J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1980)Google Scholar
  53. 53.
    K. Rashedi, M. Sini, Inverse Probl. 31, 1 (2015)CrossRefGoogle Scholar
  54. 54.
    P.C. Hansen, SIAM Rev. 34, 561 (1992)MathSciNetCrossRefGoogle Scholar
  55. 55.
    R. Mathon, R.L. Johnston, SIAM J. Numer. Anal. 14, 638 (1977)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    K. Rashedi, H. Adibi, M. Dehghan, Numer. Methods Partial Differ. Equ. 31, 1995 (2015)CrossRefGoogle Scholar
  57. 57.
    K. Rashedi, H. Adibi, M. Dehghan, Comput. Math. Appl. 65, 1990 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Science and Technology of MazandaranBehshahrIran
  2. 2.Resson Aerospace CorporationFrederictonCanada

Personalised recommendations