Advertisement

Influence of space charge density on electron energy distribution function and on composition of atmospheric pressure He/O2/air plasmas

  • Željko MladenovićEmail author
  • Saša Gocić
  • Dragana Marić
  • Zoran Lj. Petrović
Regular Article
  • 56 Downloads

Abstract.

Atmospheric pressure non-equilibrium plasma represents an efficient source of reactive species for different kinds of applications. Rich chemistry of such plasmas develops on longer time scales and is difficult to handle by kinetic models so global models are often applied to study such processes. The Maxwell-Boltzmann (MB) distribution is often used in global modelling of these non-equilibrium systems, even for the calculation of electron rate coefficients. In order to test the sensitivity of plasma composition on the space charge density and consequently on the assumed electron energy distribution function (EEDF), the zero-dimensional global model is applied to the helium/oxygen mixture (0.5% of O2 with humid air impurities. To test the effect of the distribution function on global models we have included the data calculated based on the non-equilibrium EEDF for the processes where often exponential Arrhenius-like formulae as a function of the effective temperature are used. The initial calculation showed that the change in the form of distribution function mainly affects the processes with thresholds considerably higher than the mean electron energy while it does not change much the rates for the processes with the thresholds and peaks of the cross sections in the region of the mean energy. We have calculated variations of the EEDF with the charge density and the resulting changes in chemical kinetics.

References

  1. 1.
    I. Adamovich, S. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. Mededovic Thagard, H.R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z. Lj. Petrovic, L.C. Pitchford, Y.K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. van de Sanden, A. Vardelle, J. Phys. D 50, 323001 (2017)CrossRefGoogle Scholar
  2. 2.
    M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2ed. (John Wiley & Sons, New Jersey, 2005) p. 757Google Scholar
  3. 3.
    T. Makabe, Z. Petrović, Plasma electronics: Applications in Microelectronic Device Fabrication (Tayler & Francis Group, New York and London, 2006) p. 330Google Scholar
  4. 4.
    N. Puač, Z. Lj. Petrović, G. Malović, A. Dordević, S. Zivković, Z. Giba, D. Grubišić, J. Phys. D 39, 3514 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. Van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A.N. Bhoj, M.J. Kushner, J. Phys. D 39, 1594 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R. Dorai, M.J. Kushner, J. Phys. D 36, 666 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    D.X. Liu, M.Z. Rong, X.H. Wang, F. Iza, M.G. Kong, P. Bruggeman, Plasma Process. Polym. 7, 846 (2010)CrossRefGoogle Scholar
  9. 9.
    P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D.X. Liu, P. Bruggeman, F. Iza, M.Z. Rong, M.G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Norberg, E. Johnsen, M.J. Kushner, Plasma Sources Sci. Technol. 24, 035026 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    K.R. Stalder, R.J. Vidmar, G. Nersisyan, W.G. Graham, J. Appl. Phys. 99, 093301 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    D.X. Liu, F. Iza, X.H. Wang, M.G. Kong, M.Z. Rong, Appl. Phys. Lett. 98, 221501 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Sakiyama, D.B. Graves, H.W. Chang, T. Shimizu, G.E. Morfill, J. Phys. D 45, 425201 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    T. Murakami, K. Niemi, T. Gans, D. O'Connell, W.G. Graham, Plasma Sources Sci. Technol. 22, 015003 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z. Lj. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui, G. Zvereva, Plasma Sources Sci. Technol. 25, 053002 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    T. Murakami, K. Niemi, T. Gans, D. O'Connell, W.G. Graham, Plasma Sources Sci. Technol. 23, 025005 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Lj. Petrović, M. Suvakov, Z. Nikitović, S. Dujko, O. Sašić, J. Jovanović, G. Malović, V. Stojanović, Plasma Sources Sci. Technol. 16, S1 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Lj. Petrović, S. Dujko, D. Marić, G. Malović, Z. Nikitović, O. Sašić, J. Jovanović, V. Stojanović, M. Radmilović-Radenović, J. Phys. D 42, 194002 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    G.J.M. Hagelaar, L.C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    G.J.M. Hagelaar, Plasma Sources Sci. Technol. 25, 015015 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Donko, N. Dyatko, Eur. Phys. J. D 70, 135 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    C. Lazzaroni, P. Chabert, M.A. Lieberman, A.J. Lichtenberg, A. Leblanc, Plasma Sources Sci. Technol. 21, 035013 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A. Hurlbatt, A.R. Gibson, S. Schroter, J. Bredin, A.P.S. Foote, P. Grondein, D. O'Connell, T. Gans, Plasma Process. Polym. 14, 1600138 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Rauf, M.J. Kushner, J. Appl. Phys. 85, 3460 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    N. Nakano, N. Shimura, Z. Lj. Petrović, T. Makabe, Phys. Rev. E 49, 4455 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    T. Makabe, N. Nakano, Y. Yamaguchi, Phys. Rev. A 45, 2520 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    T.J. Sommerer, M.J. Kushner, J. Appl. Phys. 71, 1654 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Donko, P. Hartmann, K. Kutasi, Plasma Sources Sci. Technol. 15, 178 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M.M. Turner, A. Derzsi, Z. Donko, D. Eremin, S.J. Kelly, T. Lafleur, T. Mussenbrock, Phys. Plasmas 20, 013507 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    S. Dujko, A.H. Markosyan, R.D. White, U. Ebert, J. Phys. D 46, 475202 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A.H. Markosyan, J. Teunissen, S. Dujko, U. Ebert, Plasma Sources Sci. Technol. 24, 065002 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    J. Loureiro, C.M. Ferreira, M. Capitelli, C. Gorse, M. Cacciatore, J. Phys. D 23, 1371 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    M. Capitelli, Nonequilibrium Vibrational Kinetics (Springer-Verlag, Berlin, Heidelberg, 1986) p. 337Google Scholar
  35. 35.
    G.I. Font, W.L. Morgan, G. Mennenga, J. Appl. Phys. 91, 3530 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    B. Gordiets, C.M. Ferreira, M.J. Pinheiro, A. Ricard, Plasma Sources Sci. Technol. 7, 363 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    T. Tochikubo, Z. Lj. Petrović, S. Kakuta, N. Nakano, T. Makabe, Jpn. J. Appl. Phys. 33, 4271 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    E. Gogolides, H.H. Sawin, J. Appl. Phys. 72, 3988 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    D.P. Lymberopoulos, D.J. Economou, J. Appl. Phys. 73, 3668 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Nikitović, V. Stojanović, Z. Lj. Petrović, U. Cvelbar, M. Mozetič, EPL 9, 55001 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Lj. Petrović, D. Marić, M. Savić, S. Marjanović, S. Dujko, G. Malović, Plasma Process. Polym. 14, 1600124 (2017)CrossRefGoogle Scholar
  42. 42.
    V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Phys. Rev. Lett. 68, 40 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    E. Meeks, J.W. Shon, IEEE Trans. Plasma Sci. 23, 539 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    J.T. Gudmundsson, Plasma Sources Sci. Technol. 10, 76 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    S. Mukkavilli, C.K. Lee, K. Varghese, L.L. Tavlarides, IEEE Trans. Plasma Sci. 16, 652 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    R.J. Carman, R.P. Mildren, J. Phys. D 33, L99 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    K. Nam, J.P. Verboncoeur, Appl. Phys. Lett. 92, 231502 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    G. Park, H. Lee, G. Kim, J.K. Lee, Plasma Process. Polym. 5, 569 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Yang, Plasma Chem. Plasma Process. 23, 327 (2003)CrossRefGoogle Scholar
  50. 50.
    G.Z. Park, Y.J. Hong, H.W. Lee, J.Y. Sim, J.K. Lee, Plasma Process. Polym. 7, 281 (2010)CrossRefGoogle Scholar
  51. 51.
    R. Dorai, K. Hassouni, M.J. Kushner, J. Appl. Phys. 88, 6060 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    D.S. Stafford, M.J. Kushner, J. Appl. Phys. 96, 2451 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    M.M. Turner, Plasma Sources Sci. Technol. 24, 035027 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    J. Tennyson, S. Rahimi, C. Hill, L. Tse, A. Vibhakar, D. Akello-Egwel, D.B. Brown, A. Dzarasova, J.R. Hamilton, D. Jaksch, S. Mohr, K. Wren-Little, J. Bruckmeier, A. Agarwal, K. Bartschat, A. Bogaerts, J.P. Booth, M.J. Goeckner, K. Hassouni, Y. Itikawa, B.J. Braams, E. Krishnakumar, A. Laricchiuta, N.J. Mason, S. Pandey, Z. Lj. Petrović, Y.K. Pu, A. Ranjan, S. Rauf, J. Schulze, M.M. Turner, P. Ventzek, J.C. Whitehead, J.S. Yoon, Plasma Sources Sci. Technol. 26, 055014 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    N. Puač, M. Gherardi, M. Shiratani, Plasma Process. Polym. 15, e1700174 (2018)CrossRefGoogle Scholar
  56. 56.
  57. 57.
    K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O'Connell, Plasma Sources Sci. Technol. 20, 055005 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    Morgan database (2014), https://doi.org/www.lxcat.net, retrieved 11 February 2014
  59. 59.
    M. Capitelli, R. Celiberto, G. Colonna, F. Esposito, C. Gorse, K. Hassouni, A. Laricchiuta, S. Longo, Fundamental Aspects of Plasma Chemical Physics Kinetics, Springer Series on Atomic, Optical, and Plasma Physics (Springer, New York, 2016) p. 318Google Scholar
  60. 60.
    G. Colonna, M. Capitelli, J. Phys. D 34, 1812 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    V. Guerra, P.A. Sa, J. Loureiro, Eur. Phys. J. Appl. Phys. 28, 125 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    L.D. Pietanza, G. Colonna, G. D'Ammando, A. Laricchiuta, M. Capitelli, Phys. Plasmas 23, 013515 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    A.J. Dixon, J. Phys. B: Atom. Mol. Phys. 9, 15 (1976)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Željko Mladenović
    • 1
    Email author
  • Saša Gocić
    • 1
  • Dragana Marić
    • 2
  • Zoran Lj. Petrović
    • 2
    • 3
  1. 1.Department of Physics, Faculty of Sciences and MathematicsUniversity of NišNišSerbia
  2. 2.Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  3. 3.Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations