Advertisement

Eyring-Powell fluid flow through a wall jet in the presence of viscous dissipation

  • Syed Zulfiqar Ali ZaidiEmail author
  • Syed Tauseef Mohyud-Din
  • Umar Khan
  • Naveed Ahmad
Regular Article
  • 40 Downloads

Abstract.

The present study is conducted by keeping in view the applications of heat transfer through a wall jet flow in the field of engineering, biomedicine, industries and cooling-heating systems. We have investigated the laminar and steady flow of an incompressible Eyring-Powell fluid through a wall jet with viscous dissipation. To obtain the numerical solution of the problem by the RK coupled with the shooting method, we have utilized boundary layer approximation to reduce the governing equations along with appropriate boundary conditions. Fluid parameter m acts as a resistive force for the flow of the fluid. Variation in the temperature profile due the Prandtl number also predicts that for its higher values the rate of heat transfer decreases. The viscous dissipation parameter known to be the local Eckert number helps to obtain increased thermal boundary layer thickness and a decrease in the rate of heat transfer.

References

  1. 1.
    R.E. Powell, H. Eyring, Nature 154, 427 (1944)ADSCrossRefGoogle Scholar
  2. 2.
    N.T.M. Eldabe, A.A. Hassan, M.A.A. Mohamed, Z. Naturforsch. 58a, 204 (2003)ADSGoogle Scholar
  3. 3.
    J. Zueco, O.A. Beg, Int. J. Appl. Math. Mech. 5, 1 (2009)Google Scholar
  4. 4.
    S. Islam, A. Shah, C. Zhou, I. Ali, Z. Angew. Math. Phys. 60, 1178 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Int. J. Heat Mass Transfer 55, 1817 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Mushtaq, M. Mustafa, T. Hayat, M. Rahi, A. Alsaedi, Z. Naturforsch. 68a, 791 (2013)ADSGoogle Scholar
  7. 7.
    K.V. Prasada, P.S. Datti, B.T. Raju, Int. J. Math. Arch. 4, 230 (2013)Google Scholar
  8. 8.
    O. Adesanya, J.A. Gbadeyan, Int. J. Nonlinear Sci. 9, 86 (2010)Google Scholar
  9. 9.
    A. Hussain, M.Y. Malik, F. Khan, Chin. J. Eng. 2013, 808342 (2013)CrossRefGoogle Scholar
  10. 10.
    S.O. Adesanya, J.A. Falade, R. Rach, Theor. Appl. Mech. 42, 135 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    T. Hayat, I. Ullah, T. Muhammad, A. Alsaedi, S.A. Shehzad, Chin. Phys. B 25, 074701 (2016)CrossRefGoogle Scholar
  12. 12.
    M.F. El-Amin, A.A. Mohammadein, Heat Transf. Eng. 26, 75 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Nayak, S. Panda, Math. Theory Model. 3, 38 (2013)Google Scholar
  14. 14.
    K.K. Jaber, Eur. Sci. J. 10, 383 (2014)Google Scholar
  15. 15.
    M.H. MatYasin, A. Ishak, I. Pop, Sci. Rep. 5, 17848 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    N. Tetervin, Laminar flow of a slightly viscous incompressible fluid that issues from a slit and passes over a flate plate (National Advisory Committee for Aeronautics, Washington, D.C., 1948)Google Scholar
  17. 17.
    M.B. Glauert, J. Fluid Mech. 16, 625 (1956)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Sigalla, Aircraft Eng. Aerospace Technol. 30, 131 (1958)CrossRefGoogle Scholar
  19. 19.
    J.H. Merkin, D.J. Needham, J. Eng. Math. 20, 21 (1986)CrossRefGoogle Scholar
  20. 20.
    J.H. Merkin, D.J. Needham, J. Eng. Math. 21, 17 (1987)CrossRefGoogle Scholar
  21. 21.
    E. Magyari, B. Keller, I. Pop, Acta Mech. 163, 139 (2003)CrossRefGoogle Scholar
  22. 22.
    T. Fan, H. Xu, Commun. Nonlinear Sci. Numer. Simul. 18, 1162 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Zaidi, S. Mohyud-Din, Aerospace Sci. Technol. 49, 225 (2016)CrossRefGoogle Scholar
  24. 24.
    U. Khan, S. Mohyud-Din, B.B. Mohsin, Aerospace Sci. Technol. 50, 196 (2016)CrossRefGoogle Scholar
  25. 25.
    S.T. Mohyud-Din, U. Khan, A. Naveed, Neural Comput. Appl. 28, 37 (2017)CrossRefGoogle Scholar
  26. 26.
    N. Panagiotis, D. Drikakis, J. Non-Newtonian Fluid Mech. 111, 127 (2003)CrossRefGoogle Scholar
  27. 27.
    D. Drikakis, Phys. Fluids 9, 76 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    B. Shen, L. Zheng, S. Chen, AIP Adv. 5, 107133 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A. Raees, H. Xu, M.R. Haq, Bound. Value Probl. 2014, 163 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Syed Zulfiqar Ali Zaidi
    • 1
    Email author
  • Syed Tauseef Mohyud-Din
    • 2
  • Umar Khan
    • 1
  • Naveed Ahmad
    • 2
  1. 1.Department of MathematicsCOMSATS UI (Abbottabad Campus)AbbottabadPakistan
  2. 2.Department of Mathematics, Faculty of SciencesHITEC UniversityTaxila CanttPakistan

Personalised recommendations