Velocity slip in mixed convective oblique transport of titanium oxide/water (nano-polymer) with temperature-dependent viscosity

  • Rabail Tabasum
  • R. MehmoodEmail author
  • O. Pourmehran
Regular Article


Nano-polymers are the emerging development in cell coatings due to their enhanced durability and thermal efficiency. The viscosity of such fluids is considerably influenced by temperature. Motivated by fascinating applications of nano-polymers, the present article offers a mathematical study of steady, oblique transport of titanium water-based nano-polymer gels under mixed convection effects. To simulate real nano-polymer boundary interface dynamics, convective surface along with velocity slip are analysed at the wall. Viscosity is assumed to be temperature-dependent in our analysis. The conservation equations for mass, momentum (both normal and tangential) and energy are normalized using appropriate transformations leading to a multi degree nonlinear ordinary differential equations problem. Numerical solutions are attained using the Runge-Kutta-Fehlberg method with shooting quadrature in the symbolic software MATLAB. The influence of key evolving parameters, namely mixed convection parameter, velocity slip parameter, nanoparticles volume fraction on non-dimensional velocity components, temperature, normal and tangential skin friction coefficients and local heat flux is examined. Increasing the velocity slip parameter decreases the velocity components while it increases the temperature. The simulations performed reveal that the normal skin friction coefficient and the heat flux at the wall increase with enhancing the nanoparticles volume fraction.


  1. 1.
    S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles in ASME International Mechanical Congress and Exposition, San Francisco, 12–17 November 1995 (ASME, 1995) pp. 99--105Google Scholar
  2. 2.
    N. Bachok, A. Ishak, R. Naza, I. Pop, Physica B 405, 4914 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    M. Ferdows, M.S. Khan, O.A. Beg, M.A.K. Azad, M.M. Alam, Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 228, 181 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Das, Comput. Math. Appl. 63, 255 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Kameswaran, S. Shaw, P. Sibanda, P. Murthy, Int. J. Heat Mass Transfer 57, 465 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Olanrewaju, O. Makinde, Chem. Eng. Commun. 200, 836 (2013)CrossRefGoogle Scholar
  7. 7.
    W. Ibrahim, O.D. Makinde, Comp. Fluids 86, 433 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Pal, G. Mandal, K. Vajravelu, Appl. Math. Comput. 238, 208 (2014)MathSciNetGoogle Scholar
  9. 9.
    U. Khan, N. Ahmed, S.I.U. Khan, S.T. Mohyud-din, Propuls. Power Res. 3, 151 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Nadeem, R. Mehmood, N.S. Akbar, Int. J. Therm. Sci. 78, 90 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Hayat, S. Shehzad, M. Qasim, A. Alsaedi, Braz. J. Chem. Eng. 31, 109 (2014)CrossRefGoogle Scholar
  12. 12.
    T. Hayat, M.B. Ashraf, H.H. Alsulami, M.S. Alhuthali, PLoS ONE 9, e90038 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hatami, K. Hosseinzadeh, G. Domairry, M.T. Behnamfar, J. Taiwan Inst. Chem. Eng. 45, 2238 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Hatami, M. Sheikholeslami, M. Hosseini, D.D. Ganji, J. Mol. Liq. 194, 251 (2014)CrossRefGoogle Scholar
  15. 15.
    O.V. Stoyanov (Editors), Nano-polymers and Modern Materials: Preparation, Properties and Applications (CRC Press, Florida, USA, 2013)Google Scholar
  16. 16.
    M. Shen, F. Wang, H. Chen, Bound. Value Prob. 78, 2015 (2015)Google Scholar
  17. 17.
    T. Hayat, M.S. Anwar, M. Farooq, A. Alsaedi, PLoS ONE 10, 3 (2015)Google Scholar
  18. 18.
    B. Sahoo, S. Poncet, Int. J. Heat Mass Transfer 54, 5010 (2011)CrossRefGoogle Scholar
  19. 19.
    A. Noghrehabadi, R. Pourrajab, M. Ghalambaz, Int. J. Therm. Sci. 54, 253 (2012)CrossRefGoogle Scholar
  20. 20.
    A.S. Dogonchi, M. Hatami, Kh. Hosseinzadeh, G. Domairry, Powder Technol. 278, 248 (2015)CrossRefGoogle Scholar
  21. 21.
    N.S. Akbar, S. Nadeem, T. Hayat, A.A. Hendi, Meccanica 47, 1283 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Malvandi, F. Hedayati, D.D. Ganji, Powder Technol. 253, 377 (2014)CrossRefGoogle Scholar
  23. 23.
    E. Abu-Nada, A.J. Chamkha, Int. J. Therm. Sci. 49, 2339 (2010)CrossRefGoogle Scholar
  24. 24.
    R. Ellahi, Appl. Math. Model. 37, 1451 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Vajravelu, K.V. Prasad, N. Chiu-On, J. Hydrodyn. Ser. B 25, 1 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M. Yousefi, O. Pourmehran, M. Gorji-Bandpy, K. Inthavong, L. Yeo, J. Tu, Biomech. Mod. Mechanobiol. 16, 2035 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Mosayebidorcheh, M. Rahimi-Gorji, D.D. Ganji, T. Moayebidorcheh, O. Pourmehran, M. Biglarian, J. Cent. South Univ. 24, 675 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Biglarian, M.R. Gorji, O. Pourmehran, G. Domairry, Int. J. Hydrogen Energy 42, 22005 (2017)CrossRefGoogle Scholar
  29. 29.
    S.S. Ghadikolaei, M. Yassari, H. Sadeghi, Kh. Hosseinzadeh, D.D. Ganji, Powder Technol. 322, 428 (2017)CrossRefGoogle Scholar
  30. 30.
    S.S. Ghadikolaei, Kh. Hosseinzadeh, M. Yassari, H. Sadeghi, D.D. Ganji, J. Mol. Liq. 244, 374 (2017)CrossRefGoogle Scholar
  31. 31.
    Kh. Hosseinzadeh, A. Jafarian Amiri, S. Saedi Ardahaei, D.D. Gangi, Case Stud. Therm. Eng. 10, 595 (2017)CrossRefGoogle Scholar
  32. 32.
    Kh. Hosseinzadeh, F. Afsharpanah, S. Zamani, D.D. Ganji, Case Stud. Therm. Eng. 12, 228 (2018)CrossRefGoogle Scholar
  33. 33.
    S.S. Ghadikolaei, Kh. Hosseinzadeh, D.D. Ganji, B. Jafari, Case Stud. Therm. Eng. 12, 176 (2018)CrossRefGoogle Scholar
  34. 34.
    S.S. Ghadikolaei, Kh. Hosseinzadeh, D.D. Ganji, J. Mol. Liq. 258, 172 (2018)CrossRefGoogle Scholar
  35. 35.
    S. Saedi Ardahaei, A. Jafarian Amiri, A. Amouei, Kh. Hosseinzadeh, D.D. Ganji, Info. Med. Unlocked 10, 71 (2018)CrossRefGoogle Scholar
  36. 36.
    S.S. Ghadikolaei, Kh. Hosseinzadeh, D.D. Ganji, J. Mol. Liq. 262, 376 (2018)CrossRefGoogle Scholar
  37. 37.
    N. Balazadeh, M. Sheikholeslami, D.D. Ganji, Z. Li, J. Mol. Liq. 260, 30 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Gholinia, S. Gholinia, K. Hosseinzadeh, D.D. Ganji, Results Phys. 9, 1525 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Kh. Hosseinzadeh, M. Alizadeh, D.D. Ganji, Int. J. Mech. Mater. Eng. 13, 4 (2018)CrossRefGoogle Scholar
  40. 40.
    R. Tabassum, R. Mehmood, O. Pourmehran, N.S. Akbar, M. Gorgi-Bandpy, Proc. Inst. Mech. Eng. Part E (2017)
  41. 41.
    R. Tabassum, R. Mehmood, N.S. Akbar, Eur. Phys. J. Plus 132, 275 (2017)CrossRefGoogle Scholar
  42. 42.
    R. Tabassum, R. Mehmood, S. Nadeem, J. Colloid Interface Sci. 501, 304 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    R. Mehmood, R. Tabassum, Indian J. Phys. (2018)
  44. 44.
    S. Das, R. Jana, O. Makinde, Eng. Sci. Tech. Int. J. 18, 244 (2015)CrossRefGoogle Scholar
  45. 45.
    M.M. Sarafraz, V. Nikkhah, M. Nakhjavani, A. Arya, Appl. Therm. Eng. 123, 29 (2017)CrossRefGoogle Scholar
  46. 46.
    M.M. Sarafraz, F. Hormozi, Period. Polytechn. Chem. Eng. 58, 37 (2014)CrossRefGoogle Scholar
  47. 47.
    O. Pourmehran, M. Rahimi-Gorji, D. Ganji, J. Taiwan Inst. Chem. Eng. 65, 162 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Natural SciencesHITEC UniversityTaxila CanttPakistan
  2. 2.Young Researchers and Elite Club, Gorgan BranchIslamic Azad UniversityGorganIran

Personalised recommendations