Advertisement

Raman spectroscopy and optical properties of GAZO thin films deposited at various substrate temperatures

  • Edigar MuchuweniEmail author
  • Thangiah S. Sathiaraj
  • Chipo Shonhiwa
Regular Article
  • 23 Downloads

Abstract.

We report the Raman study and optical properties of gallium and aluminium co-doped ZnO (GAZO) thin films deposited at various substrate temperatures by sputtering. The films exhibited Raman peaks at 99 cm-1, 437 cm-1 and 575 cm-1 which were assigned to the ZnO \( E_{2}\) (low), \( E_{2}\) (high) and \( {\rm A}_{1}\) (LO) modes, respectively. The wavelength dependence of the refractive index and the extinction coefficient were described by the Cauchy dispersion model, through theoretical modelling of the transmittance data. The refractive index showed an increasing trend while the extinction coefficient decreased with increasing substrate temperature in the visible region. This was attributed to the relative decrease in transmittance observed at higher substrate temperatures. The dielectric constant (\( \varepsilon\)) , dissipation factor \( (\tan\delta)\) and optical conductivity (\( \sigma\)) values were associated with the films’ high transparency. The Wemple and Didomenico single oscillator dispersion energies ( \( E_{o}\) and \( E_{d}\) increased with substrate temperature which was attributed to the reduction in residual stress, improvement in microstructural order and crystallinity. The static refractive index \( (n_0)\) , optical band gap \( (E_{g})\) , long wavelength dielectric constant ( \( \varepsilon_0\) , the \( M_{-1}\) and \( M_{-3}\) moments of the optical spectra and the non-linear refractive index ( \( n_2\) were determined. Optimum optical properties were obtained in films deposited on heated substrates (75 and \( 100 {}^{\circ}\) C).

References

  1. 1.
    C. Chevalier-César, M. Capochichi-Gnambodoe, F. Lin, D. Yu, Y. Leprince-Wang, AIMS Mater. Sci. 3, 562 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Sahal, B. Hartiti, A. Ridah, M. Mollar, B. Marí, Microelectron. J. 39, 1425 (2008)CrossRefGoogle Scholar
  3. 3.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Ceram. Int. 42, 10066 (2016)CrossRefGoogle Scholar
  4. 4.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e00285 (2017)CrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, J. Phys.: Condens. Matter 16, R829 (2004)ADSGoogle Scholar
  6. 6.
    W. Yang, F. Wan, S. Chen, C. Jiang, Nanoscale Res. Lett. 4, 1486 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  8. 8.
    H.J. Zhou, S.S. Wong, ACS Nano 2, 944 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Hariharan, Appl. Catal. A 304, 55 (2006)CrossRefGoogle Scholar
  10. 10.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Appl. Surf. Sci. 390, 570 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Mater. Res. Bull. 95, 123 (2017)CrossRefGoogle Scholar
  12. 12.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Ceram. Int. 42, 17706 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Charpentier, P. Prod’homme, I. Maurin, M. Chaigneau, P.R. Cabarrocas, Eur. Phys. J. Photovolt. 2, 25002 (2011)ADSGoogle Scholar
  14. 14.
    R.G. Waykar, A.S. Pawbake, R.R. Kulkarni, A.A. Jadhavar, A.M. Funde, V.S. Waman, H.M. Pathan, S.R. Jadkar, J. Mater. Sci. Mater. Electron. 27, 1134 (2016)CrossRefGoogle Scholar
  15. 15.
    S.B. Yahia, L. Znaidi, A. Kanaev, J.-P. Petitet, Spectrochim. Acta Mol. Biomol. Spectrosc. 71, 1234 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.C. Chervin, A. Polian, Phys. Rev. B 65, 092101 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    K.A. Alim, V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett. 86, 053103 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A. Ismail, M.J. Abdullah, J. King Saud Univ. Sci. 25, 209 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.C. Liu, J.H. Hsieh, S.K. Tung, Thin Solid Films 510, 32 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Z.-H. Dai, R.-J. Zhang, J. Shao, Y.-M. Chen, Y.-X. Zheng, J.-D. Wu, L.-Y. Chen, J. Korean Phys. Soc. 55, 1227 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloys Compd. 448, 21 (2008)CrossRefGoogle Scholar
  22. 22.
    D.-Y. Zhang, P.-P. Wang, R.-I. Murakami, X.-P. Song, Progr. Nat. Sci. Mater. 21, 40 (2011)CrossRefGoogle Scholar
  23. 23.
    M.H. Mamat, M.F. Malek, N.N. Hafizah, M.N. Asiah, A.B. Suriani, A. Mohamed, N. Nafarizal, M.K. Ahmad, M. Rusop, Ceram. Int. 42, 4107 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Energy Proc. 50, 603 (2014)CrossRefGoogle Scholar
  25. 25.
    N. Hamzaoui, A. Boukhachem, M. Ghamnia, C. Fauquet, Results Phys. 7, 1950 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Z.Z. You, G.J. Hua, J. Alloys Compd. 530, 11 (2012)CrossRefGoogle Scholar
  27. 27.
    T.S. Sathiaraj, Microelectron. J. 39, 1444 (2008)CrossRefGoogle Scholar
  28. 28.
    S.K. Ahmmad, M.A. Samee, A. Edukondalu, S. Rahman, Results Phys. 2, 175 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    K.R. Rajesh, C.S. Menon, Matter Lett. 53, 329 (2002)CrossRefGoogle Scholar
  30. 30.
    J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, Inc., New York, 1975) p. 91Google Scholar
  31. 31.
    Z.M. Elimat, Radiat. Effects Defects Solids 169, 686 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 1, 193 (1970)ADSCrossRefGoogle Scholar
  34. 34.
    A.-S. Gadallah, M.M. El-Nahass, Adv. Condens. Matter Phys. 2013, 234546 (2013)CrossRefGoogle Scholar
  35. 35.
    R.H.A. Orainy, J. Sol-Gel Sci. Technol. 70, 47 (2014)CrossRefGoogle Scholar
  36. 36.
    F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, J. Optoelectron. Adv. Mater. 9, 2180 (2007)Google Scholar
  37. 37.
    G. Malik, J. Jaiswal, S. Mourya, R. Chandra, J. Appl. Phys. 122, 143105 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    A.F. Quasrawi, M.M. Shukri Ahmad, Cryst. Res. Technol. 41, 364 (2006)CrossRefGoogle Scholar
  39. 39.
    K. Tanaka, Thin Solid Films 66, 271 (1980)ADSCrossRefGoogle Scholar
  40. 40.
    R.A. Smith, Semiconductors (Academic Publishers, Calcutta, 1989) pp. 461--463Google Scholar
  41. 41.
    D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.V.R. Reddy, R. Sayanna, Mod. Res. Catal. 5, 130 (2016)CrossRefGoogle Scholar
  42. 42.
    H. Tichá, J. Schwarz, L. Tichý, R. Mertens, J. Optoelectron. Adv. Mater. 6, 747 (2004)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Edigar Muchuweni
    • 1
    • 2
    Email author
  • Thangiah S. Sathiaraj
    • 1
  • Chipo Shonhiwa
    • 2
  1. 1.Department of Physics and AstronomyBotswana International University of Science and Technology (BIUST)PalapyeBotswana
  2. 2.Department of Physics and MathematicsBindura University of Science Education (BUSE)BinduraZimbabwe

Personalised recommendations