Advertisement

Thermonuclear supernovae and cosmology

  • Inma Domínguez
  • Lluís Galbany
Review
  • 9 Downloads
Part of the following topical collections:
  1. Focus Point on Modern Astronomy: Selected Issues in Nuclear and High Energy Astrophysics

Abstract.

Bright and homogeneous, thermonuclear, or type Ia, supernovae (SNeIa) are our best extragalactic distance indicators. Since the 60s, SNeIa have been used as cosmological tools, initially, to estimate the current expansion rate of the Universe, the Hubble constant. Decades ago SNeIa were discovered by chance, in many cases by amateurs. Advances in the instrumentation, techniques and new observational strategies allowed in the 80s to discover SNe in scheduled surveys. Moreover, through calibration relations, a high precision in extragalactic distance determinations was achieved, allowing SNIa observations to reveal the dynamics of the Universe. The Nobel prize in Physics in 2011 was awarded to the leaders of two independent teams “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae”. This is a brief and incomplete story of SNeIa as cosmological tools. In the Madrasah of Granada (Spain), built in 1349 by the Nasrid monarch Yosuf the 1st, Astronomy was one of the disciplines included in the studies. On the Madrasah walls, a calligraphic decoration reads: “make study shine like stars”. It is a good motto for our 4th Azarquiel School of Astronomy.

References

  1. 1.
    D. Branch, G.A. Tammann, Annu. Rev. Astron. Astrophys. 30, 359 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    F. Hoyle, W.A. Fowler, Astrophys. J. 132, 565 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    M.M. Phillips, Astrophys. J. Lett. 413, L105 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Phillips, P. Lira, N.B. Suntzeff et al., Astron. J. 118, 1766 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    G. Goldhaber et al., Astrophys. J. 558, 359 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    A. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    A. Riess et al., Astrophys. J. 607, 665 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.A. Schommer, J. Maza, R. Aviles, Astron. J. 112, 2391 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    D. Branch, W. Romanishin, E. Baron, Astrophys. J. 465, 73 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    M. Sullivan et al., Mon. Not. R. Astron. Soc. 406, 782 (2010)ADSGoogle Scholar
  12. 12.
    H. Lampeitl et al., Astrophys. J. 722, 566 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M. Betoule et al., Astron. Astrophys. 568, A22 (2014)CrossRefGoogle Scholar
  14. 14.
    M.-E. Moreno-Raya et al., Mon. Not. R. Astron. Soc. 462, 1281 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dpto. Física Teórica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.PITT PACC, Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA

Personalised recommendations