Advertisement

Framing the features of a Darcy-Forchheimer nanofluid flow past a Riga plate with chemical reaction by HPM

  • Shib Sankar Giri
  • Kalidas Das
  • Prabir Kumar Kundu
Regular Article
  • 7 Downloads

Abstract.

The electro-magneto-hydrodynamic boundary-layer nanofluid flow over a Riga plate has been examined in the present paper. The Darcy-Forchheimer model is accounted for to characterize fluid transportation in a porous space. A relative flow analysis amongst suction and injection in the presence of a chemical reaction is presented here. Effects of Brownian motion, thermophoresis and chemical reaction are incorporated in the present model. We implement a similarity approach to reduce the leading PDEs into ODEs. We resolve the resulting equations numerically by using the RK-4 shooting procedure and analytically by engaging HPM. After numerical designs, the influence of the emergent flow parameters on the flow specifics are made clear via graphs and charts. We noticed that temperature and concentration profiles are identical when the porosity parameter and the Forchheimer number increase. For the Forchheimer number heat transmission enriches in suction and declines in injection which infers in cooling practice of a nanofluid flow through Riga plate suction is more relevant than injection.

References

  1. 1.
    A. Gailitis, O. Lielausis, On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte, in Applied Magnetohydrodynamics, Reports of the Physics Institute Riga, Vol. 12 (1961) pp. 143--146Google Scholar
  2. 2.
    A. Ahmad, S. Asghar, J. Magn. & Magn. Mater. 402, 44 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    T. Abbas, M. Ayub, M.M. Bhatti, M.M. Rashidi, M.E.S. Ali, Entropy 18, 223 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    M. Ayub, T. Abbas, M.M. Bhatti, Eur. Phys. J. Plus 131, 193 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Iqbal, Z. Mehmood, E. Azhar, E.N. Maraj, J. Mol. Liq. 234, 296 (2017)CrossRefGoogle Scholar
  6. 6.
    R. Ahmad, M. Mustafa, M. Turkyilmazoglu, Int. J. Heat Mass Transfer 111, 827 (2017)CrossRefGoogle Scholar
  7. 7.
    G.K. Ramesh, G.S. Roopa, B.J. Gireesha, S.A. Shehzad, F.M. Abbasi, J. Braz. Soc. Mech. Sci. Engin. 39, 4547 (2017)CrossRefGoogle Scholar
  8. 8.
    N. Ahmed, Adnan, U. Khan, S.T. Mohyud-Din, A. Waheed, Eur. Phys. J. Plus 132, 321 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Farooq, Z. Mansoor, M.I. Khan, T. Hayat, A. Anjum, N.A. Mir, Eur. Phys. J. Plus 133, 152 (2018)CrossRefGoogle Scholar
  10. 10.
    S.U.S. Choi, Developments and Application of Non-Newtonian Flows (ASME Press, New York, USA, 1995)Google Scholar
  11. 11.
    P. Forchheimer. Wasserbewegung durch Boden., Z. Ver. Deutsch. Ing. 45, 1781 (1901)Google Scholar
  12. 12.
    A. Mahdy, A.J. Chamkha, Int. J. Numer. Methods Heat Fluid Flow 20, 924 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Mukhopadhyay, P.R. De, K. Bhattacharyya, G.C. Layek, Meccanica 47, 153 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.A. Sadiq, T. Hayat, Neural Comput. Appl. (2017)  https://doi.org/10.1007/s00521-017-3037-1
  15. 15.
    T. Hayat, F. Haider, T. Muhammad, A. Alsaedi, J. Mol. Liq. 233, 278 (2017)CrossRefGoogle Scholar
  16. 16.
    M.A. Meraj, S.A. Shehzad, T. Hayat, F.M. Abbasi, A. Alsaedi, Appl. Math. Mech. 38, 557 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Muhammad, A. Alsaedi, S.A. Shehzad, T. Hayat, Chin. J. Phys. 55, 963 (2017)CrossRefGoogle Scholar
  18. 18.
    J.C. Umavathi, O. Ojjela, K. Vajravelu, Int. J. Therm. Sci. 111, 511 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Das, J. Mech. Sci. Technol. 28, 1881 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Mabood, S.M. Ibrahim, J. Appl. Fluid Mech. 9, 2503 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Mabood, S. Shateyi, M.M. Rashidi, E. Momoniat, N. Freidoonimehr, Adv. Powder Technol. 27, 742 (2016)CrossRefGoogle Scholar
  22. 22.
    T. Hayat, M. Zubair, M. Waqas, A. Alsaedi, M. Ayub, J. Mol. Liq. 238, 229 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Mahanthesh, F. Mabood, B.J. Gireesha, R.S.R. Gorla, Eur. Phys. J. Plus 132, 113 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Mabood, W.A. Khan, A.I. Md. Ismail, Chem. Eng. J. 273, 430 (2015)CrossRefGoogle Scholar
  25. 25.
    M.R. Eid, J. Mol. Liq. 220, 718 (2016)CrossRefGoogle Scholar
  26. 26.
    S.M. Ibrahim, F. Mabood, K. Suneetha, G. Lorenzini, J. Eng. Thermophys. 26, 234 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Ramzan, M. Bilal, J. Mol. Liq. 215, 212 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Hayat, S. Qayyum, B. Ahmad, M. Waqas, Eur. Phys. J. Plus 131, 422 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Ramzan, Hina Gul, Jae Dong Chung, Eur. Phys. J. Plus 132, 456 (2017)CrossRefGoogle Scholar
  30. 30.
    F. Ayaz, Appl. Math. Comput. 143, 361 (2003)MathSciNetGoogle Scholar
  31. 31.
    M. Sheikholeslami, R. Ellahi, H.R. Ashorynejad, T. Hayat, J. Comput. Theor. Nanosci. 11, 486 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Acharya, K. Das, P.K. Kundu, Eur. Phys. J. Plus 131, 303 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Powder Technol. 239, 259 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Sheikholeslami, D.D. Ganji, Powder Technol. 235, 873 (2013)CrossRefGoogle Scholar
  35. 35.
    M.A. Noor, S.T. Mohyud-Din, A. Waheed, Appl. Math. Inf. Sci. 2, 135 (2008)MathSciNetGoogle Scholar
  36. 36.
    J.H. He, Appl. Math. Comput. 135, 73 (2003)MathSciNetGoogle Scholar
  37. 37.
    M. Sheikholeslami, H. Mollabasi, D.D. Ganji, Int. J. Nanosci. Nanotechnol. 11, 241 (2015)Google Scholar
  38. 38.
    A. Yildirim, A. Kelleci, Int. J. Numer. Methods Heat Fluid Flow 20, 897 (2010)CrossRefGoogle Scholar
  39. 39.
    A. Yildirim, Int. J. Numer. Methods Heat Fluid Flow 20, 186 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Sheikholeslami, H.R. Ashorynejad, D.D. Ganji, A. Kolahdooz, Math. Prob. Eng. 2011, 258734 (2011)CrossRefGoogle Scholar
  41. 41.
    M.M. Rashidi, D.D. Ganji, Mater. Process. Sci. Technol. Int. J. 2, 93 (2011)Google Scholar
  42. 42.
    C.Y. Wang, J. Appl. Math. Mech. (ZAMM) 69, 418 (1989)CrossRefGoogle Scholar
  43. 43.
    W.A. Khan, I. Pop, Int. J. Heat Mass Transf. 53, 2477 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shib Sankar Giri
    • 1
  • Kalidas Das
    • 2
  • Prabir Kumar Kundu
    • 3
  1. 1.Dept. of Basic Science, MCKV Institute of EngineeringHowrahIndia
  2. 2.Dept. of Mathematics, A.B.N. Seal CollegeCooch BeharIndia
  3. 3.Dept. of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations