Advertisement

A novel parametrically controlled multi-scroll chaotic attractor along with electronic circuit design

  • Karthikeyan RajagopalEmail author
  • Serdar Çiçek
  • Peiman Naseradinmousavi
  • Abdul Jalil M. Khalaf
  • Sajad Jafari
  • Anitha Karthikeyan
Regular Article
  • 114 Downloads

Abstract.

We propose a novel multi-scroll chaotic system captured through the Chua’s circuit. The novelty of our proposed multi-scroll system roots on the number of scrolls to be controlled by the parameters instead of changing the discontinuous functions repeatedly reported in the literature. We thoroughly investigate dynamical characteristics of the system using powerful tools of the nonlinear dynamic analysis including finite-time local Lyapunov exponents and bifurcation diagram. The practical feasibility of the proposed multi-scroll system is revealed through its electronic realization with off-the-shelf components.

References

  1. 1.
    J.C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific, 2010)Google Scholar
  2. 2.
    R. Trejo-Guerra et al., Commun. Nonlinear Sci. Numer. Simul. 17, 4328 (2012)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C. Li, S. Yu, X. Luo, Int. J. Bifurc. Chaos 23, 1350170 (2013)CrossRefGoogle Scholar
  4. 4.
    L.G. de la Fraga, E. Tlelo-Cuautle, Nonlinear Dyn. 76, 1503 (2014)CrossRefGoogle Scholar
  5. 5.
    E. Tlelo-Cuautle et al., Nonlinear Dyn. 85, 2143 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Ma et al., PLoS ONE 13, e0191120 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Ma et al., Nonlinear Dyn. 76, 1951 (2014)CrossRefGoogle Scholar
  8. 8.
    M. García-Martínez et al., Appl. Math. Comput. 270, 413 (2015)MathSciNetGoogle Scholar
  9. 9.
    E. Tlelo-Cuautle et al., Commun. Nonlinear Sci. Numer. Simul. 27, 66 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Li, J. Ma, PLoS ONE 11, e0154282 (2016)CrossRefGoogle Scholar
  11. 11.
    A.D. Pano-Azucena et al., Nonlinear Dyn. 87, 2203 (2017)CrossRefGoogle Scholar
  12. 12.
    T. Matsumoto, L. Chua, M. Komuro, IEEE Trans. Circ. Syst. 32, 797 (1985)CrossRefGoogle Scholar
  13. 13.
    N. Kuznetsov et al., Nonlinear Dyn. 92, 267 (2018)CrossRefGoogle Scholar
  14. 14.
    J.A. Suykens, J. Vandewalle, IEEE Trans. Circ. Syst. I 40, 861 (1993)CrossRefGoogle Scholar
  15. 15.
    G.A. Leonov, N.V. Kuznetsov, T.N. Mokaev, Eur. Phys. J. ST 224, 1421 (2015)CrossRefGoogle Scholar
  16. 16.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 23, 1330002 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Leonov, N. Kuznetsov, V. Vagaitsev, Physica D 241, 1482 (2012)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Leonov et al., Nonlinear Dyn. 77, 277 (2014)CrossRefGoogle Scholar
  19. 19.
    M.-F. Danca, N. Kuznetsov, Chaos, Solitons Fractals 103, 144 (2017)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M.-F. Danca, N. Kuznetsov, G. Chen, Nonlinear Dyn. 88, 791 (2017)CrossRefGoogle Scholar
  21. 21.
    N. Kuznetsov et al., Commun. Nonlinear Sci. Numer. Simul. 51, 39 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    E. Campos-Cantón et al., Rev. Mex. Fís. 54, 411 (2008)Google Scholar
  23. 23.
    E. Campos-Cantón et al., Chaos 20, 013116 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    J. Lu et al., IEEE Trans. Circ. Syst. I 51, 2476 (2004)MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Xu, P. Yu, J. Math. Anal. Appl. 362, 252 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Lü et al., Automatica 40, 1677 (2004)CrossRefGoogle Scholar
  27. 27.
    J. Lü, G. Chen, Int. J. Bifurc. Chaos 16, 775 (2006)CrossRefGoogle Scholar
  28. 28.
    N.V. Stankevich et al., Int. J. Bifurc. Chaos 27, 1730038 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Leonov, N. Kuznetsov, V. Vagaitsev, Phys. Lett. A 375, 2230 (2011)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    F.-Q. Wang, C.-X. Liu, Int. J. Mod. Phys. B 22, 2399 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    D. Chen et al., Int. J. Circ. Theory Appl. 42, 407 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Gámez-Guzmán et al., Commun. Nonlinear Sci. Numer. Simul. 14, 2765 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    W.K. Tang et al., IEEE Trans. Circ. Syst. I 48, 1369 (2001)CrossRefGoogle Scholar
  34. 34.
    L. Wang, Nonlinear Dyn. 56, 453 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Muñoz-Pacheco et al., Int. J. Electron. 101, 1559 (2014)CrossRefGoogle Scholar
  36. 36.
    T. Zuo et al., IEEE Trans. Circ. Syst. II 61, 818 (2014)ADSGoogle Scholar
  37. 37.
    E. Tlelo-Cuautle et al., Commun. Nonlinear Sci. Numer. Simul. 27, 66 (2015)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Jafari, V.-T. Pham, T. Kapitaniak, Int. J. Bifurc. Chaos 26, 1650031 (2016)CrossRefGoogle Scholar
  39. 39.
    J.C. Sprott, Int. J. Bifurc. Chaos 21, 2391 (2011)CrossRefGoogle Scholar
  40. 40.
    A. Wolf et al., Physica D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Stefanski, A. Dabrowski, T. Kapitaniak, Chaos, Solitons Fractals 23, 1651 (2005)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 17, 1079 (2007)CrossRefGoogle Scholar
  43. 43.
    N. Kuznetsov, T. Mokaev, P. Vasilyev, Commun. Nonlinear Sci. Numer. Simul. 19, 1027 (2014)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    N. Kuznetsov, Phys. Lett. A 380, 2142 (2016)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Q. Lai, S. Chen, Optik 127, 3000 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Q. Lai, L. Wang, Optik 127, 5400 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    A. Chudzik et al., Int. J. Bifurc. Chaos 21, 1907 (2011)MathSciNetCrossRefGoogle Scholar
  48. 48.
    T. Kapitaniak, G.A. Leonov, Eur. Phys. J. ST 224, 1405 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Bao et al., Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    M. Chen et al., Nonlinear Dyn. 91, 1395 (2018)CrossRefGoogle Scholar
  51. 51.
    Xinzhi Liu, Xuemin Sherman Shen, Hongtao Zhang, Int. J. Bifurc. Chaos 22, 02 (2012)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Nonlinear Dynamics, College of EngineeringDefense UniversityDebre ZeyitEthiopia
  2. 2.Department of Electronic and Automation, Vocational School of HacıbektaşNevşehir Hacı Bektaş Veli UniversityNevşehirTurkey
  3. 3.Dynamic Systems and Control Lab., Department of Mechanical EngineeringSan Diego State UniversitySan DiegoUSA
  4. 4.Department of Mathematics, Faculty of Computer Science and MathematicsUniversity of KufaNajafIraq
  5. 5.Department of Bio-medical engineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations