Advertisement

Strength deterioration of nano-silica contained in ordinary Portland cement concretes in aggressive sulfate environments

  • R. GopalakrishnanEmail author
  • R. Jeyalakshmi
Regular Article
  • 59 Downloads

Abstract.

This investigation presents the effect of durability of concrete in aggressive conditions and loss of compressive strength measurements for concrete incorporating 0%, 5% and 10% powdered nano-silica (NS). The important factor in this investigation is air curing, water curing, the kind of the sulfate exposure regions (continuous and drying-immersion cyclic exposures). For this investigation, w/cm (water to cementitious materials) proportion is 0.4, and 0.5. Up to 365 days the decrease in the compressive strength of concrete was examined for the aggressive sulfate conditions. In these concrete specimens, three groups were kept up. In the control assessment of compressive strength reduction, tap water was used, and this was kept up as the first group. Under continuous and cyclic exposures, 10% Na2SO4 was used as a part of alternate groups and the preparation submerged up to 365 days’ time duration. All the blends subjected to the compressive test, and durability studies, such as sorptivity, water absorption, and chloride penetration test. The outcome demonstrates the protection of cement against sulfate attack expanded by incorporating NS types of cement. The advantage of incorporating 5%, 10% NS to the densifier cement concrete, expands strength and reduces permeability.

References

  1. 1.
    G. Erhan, G. Mehmet, M. Kasim, J. Mater. Civ. Eng. 22, 403 (2010)CrossRefGoogle Scholar
  2. 2.
    I. Janotka, Ceramics Silikáty 45, 16 (2001)Google Scholar
  3. 3.
    P. Feng, E.J. Garboczi, C. Miao, J.W. Bullard, Construct. Build. Mater. 96, 391 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Feng, C. Miao, J.W. Bullard, Cem. Concr. Compos. 49, 9 (2014)CrossRefGoogle Scholar
  5. 5.
    S.M. Nadesan, P. Dinakar, Case Stud. Construct. Mat. 7, 336 (2017)CrossRefGoogle Scholar
  6. 6.
    H. AzariJafari, A. Tajadini, M. Rahimi, J. Berenjian, Construct. Build. Mater. 166, 889 (2018)CrossRefGoogle Scholar
  7. 7.
    S.M. Nadesan, P. Dinakar, Construct. Build. Mater. 176, 665 (2018)CrossRefGoogle Scholar
  8. 8.
    M.F. Najjar, M.L. Nehdi, A.M. Soliman, T.M. Azabi, Construct. Build. Mater. 137, 141 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Papatzani, Mater. Sci. Technol. 32, 138 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Papatzani, K. Paine, Adv. Cem. Res. 30, 256 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Papatzani, K. Paine, J. Calabria-Holley, Construct. Build. Mater. 74, 219 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Skalny, J. Marchand, I Odler, Sulfate Attack on Concrete, in Modern concrete technology series 10 (Spon Press, Taylor & Francis Group, London/New York, 2002)Google Scholar
  13. 13.
    H.N. Atahan, K.M. Arslan, Sustain. Cities Soc. 22, 40 (2016)CrossRefGoogle Scholar
  14. 14.
    L.P. Singh, S.R. Karade, S.K. Bhattacharyya, M.M. Yousuf, S. Ahalawat, Construct. Build. Mater. 44, 1069 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Khanzadi, M. Tadayon, H. Sepheri, M. Sepheri, Influence of Nano-Silica Particles on Mechanical Properties and Permeability of Concrete, in Second International Conference on Sustainable Construction Materials and Technologies. Milwaukee, WI: The University of Wisconsin Milwaukee Centre for By-products Utilization (University of Wisconsin-Milwaukee, 2010) p. 7Google Scholar
  16. 16.
    R. Abbas, House, Build. Natl. Res. Center J. 5, 18 (2009)Google Scholar
  17. 17.
    H.S. Arel, B.S. Thomas, Results Phys. 7, 843 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    P.K. Mehta, Cem. Concr. Res. 13, 401 (1983)CrossRefGoogle Scholar
  19. 19.
    J.D. Bernal, J.W. Jeffery, H.F.W. Taylor, Mag. Concr. Res. 4, 49 (1952)CrossRefGoogle Scholar
  20. 20.
    S. Brunauer, R.S. Mikhail, E.E. Bodor, J. Colloid Interface Sci. 25, 353 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    L.i. Gengying, Cem. Concr. Res. 34, 1043 (2004)CrossRefGoogle Scholar
  22. 22.
    M.H. Zhang, J. Islam, S. Peethamparan, Cem. Concr. Compos. 34, 650 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Rupasinghe, P. Mendis, T. Ngo, T.N. Nguyen, M. Sofi, Mat. Design 115, 379 (2017)CrossRefGoogle Scholar
  24. 24.
    H.F.W. Taylor, J. Am. Ceram. Soc. 69, 464 (1986)CrossRefGoogle Scholar
  25. 25.
    J. Lee, S. Mahendra, P.J.J. Alvarez, ACS Nano 4, 3580 (2010)CrossRefGoogle Scholar
  26. 26.
    H.K. Venkatanarayanan, P.R. Rangaraju, P.E.M. Asce, J. Mater. Civ. Eng. 26, 582 (2014)CrossRefGoogle Scholar
  27. 27.
    A.N. Naji Givi, S. Abdul Rashid, A. Aziz, M.A.M. Salleh, Compos. Part B: Eng. 41, 673 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Heidari, D. Tavakoli, Construct. Build. Mater. 38, 255 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Jalal, R.A. Pouladkhan, H. Norouzi, G. Choubdar, J. Am. Sci. 8, 278 (2012)Google Scholar
  30. 30.
    T. Ji, Cem. Concr. Res. 35, 1943 (2005)CrossRefGoogle Scholar
  31. 31.
    B.W. Jo, C.H. Kim, J.H. Lim, KSCE J. Civ. Eng. 11, 37 (2007)CrossRefGoogle Scholar
  32. 32.
    B.W. Jo, C.H. Kim, G.H. Tae, J.B. Park, Construct. Build. Mater. 21, 1351 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Kawashima, P. Hou, D.J. Corr, S.P. Shah, Cem. Concr. Compos. 36, 8 (2012)CrossRefGoogle Scholar
  34. 34.
    D. Kong, X. Du, S. Wei, H. Zhang, Y. Yang, S.P. Shah, Construct. Build. Mater. 37, 707 (2012)CrossRefGoogle Scholar
  35. 35.
    E. Bonaccorsi, S. Merlino, H.F.W. Taylor, Cem. Concr. Res. 34, 1481 (2004)CrossRefGoogle Scholar
  36. 36.
    Al.A. Ramezanianpour, A. Pilvar, M. Mahdikhani, F. Moodi, Construct. Build. Mater. 25, 2472 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Jalal, R.A. Pouladkhan, H. Norouzi, G. Choubdar, J. Am. Sci. 8, 278 (2012)Google Scholar
  38. 38.
    M.H. Zhang, H. Li, Construct. Build. Mater. 25, 608 (2011)CrossRefGoogle Scholar
  39. 39.
    M.H. Zhang, J. Islam, S. Peethamparan, Cem. Concr. Compos. 34, 650 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Neville, Cem. Concr. Res. 34, 1275 (2004)CrossRefGoogle Scholar
  41. 41.
    X. Ping, J. Beaudoin, Cem. Concr. Res. 22, 631 (1992)CrossRefGoogle Scholar
  42. 42.
    L. Karen Scrivener, Shao-Dong Wang, Cem. Concr. Res. 25, 561 (1992)Google Scholar
  43. 43.
    H. Lafuma, Mat. Const. 243, 441 (1970)Google Scholar
  44. 44.
    M.K. Mojdeh, T.O. Ehsan Mohseni, R. Malek Mohammad, J. Mater. Civ. Eng. 29, 1 (2017)Google Scholar
  45. 45.
    H. Li, H.G. Xiao, J. Yuan, J. Ou, Compos. Part B: Eng. 35, 185 (2004)CrossRefGoogle Scholar
  46. 46.
    T. Ji, Cem. Concr. Res. 35, 1943 (2005)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Nanotechnology, SRM Institute of Science and TechnologyFaculty of Engineering and TechnologyTamilnaduIndia
  2. 2.Department of Chemistry, SRM Institute of Science and TechnologyFaculty of Engineering and TechnologyTamilnaduIndia

Personalised recommendations