Advertisement

Gravitational quantum well as an effective quantum heat engine

  • Jonas F. G. Santos
Regular Article

Abstract.

In this work the gravitational quantum well is used to model an effective two-level system and to perform two thermodynamic cycles, the isogravitational and the isoenergetic ones. It is shown that the isogravitational is independent of the scale parameter whereas the isoenergetic has a dependence on the eigenstates chosen to form the cycle. An equivalent equation for the isoenergetic cycle is also obtained, which is similar to the equation of state for an isothermal process of an ideal gas. This equation reinforces the concept of energy bath, where the temperature is replaced by the energy into the expression of efficiency.

References

  1. 1.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A 49, 143001 (2016)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H.T. Quan, Yu-xi Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Vinjanampathya, J. Anders, Contemp. Phys. 57, 4 (2016)Google Scholar
  4. 4.
    R. Kosloff, Y. Rezek, Entropy 19, 136 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    B. Reid, S. Pigeon, M. Antezza, G. de Chiara, EPL 120, 60006 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    J. Roßnagel et al., Science 352, 6283 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    H. Terças, S. Ribeiro, M. Pezzutto, Y. Omar, Phys. Rev. E 95, 022135 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    S. Seah, S. Nimmrichter, V. Scarani, New J. Phys. 20, 043045 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    F. Altintas, Ö. E. Müstecaplıoğlu, Phys. Rev. E 92, 022142 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J.P.S. Peterson, arXiv:1803.06021 (2018)Google Scholar
  12. 12.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017)Google Scholar
  14. 14.
    M.P. Woods, N. Ng, S. Wehner, arXiv:1506.02322 (2016)Google Scholar
  15. 15.
    N.H.Y. Ng, M. Woods, S. Wehner, New J. Phys. 19, 113005 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    E. Boukobza, H. Ritsch, Phys. Rev. A 87, 063845 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    C.M. Bender, D.C. Brody, B.K. Meister, J. Phys. A 33, 4427 (2000)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G.B. Barrios, F.J. Penã, F. A-Arrigada, P. Vargas, J.C. Retamal, arXiv:1803.08083 (2018)Google Scholar
  19. 19.
    E. Muñoz, F.J. Penã, Phys. Rev. E 86, 061108 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J.F.G. Santos, A.E. Bernardini, Eur. Phys. J. Plus 132, 260 (2017)CrossRefGoogle Scholar
  21. 21.
    F.J. Peña, M. Ferré, P.A. Orellana, R.G. Rojas, P. Vargas, Phys. Rev. E 94, 022109 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    S. Liu, C. Ou, Entropy 18, 205 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    G. Ichikawa et al., Phys. Rev. Lett. 112, 071101 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    F. Brau, F. Buisseret, Phys. Rev. D 74, 036002 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    O. Bertolami, J.G. Rosa, C.M.L. de Aragão, P. Castorina, D. Zappalà, Phys. Rev. D 72, 025010 (2005)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    L. Lawson, L. Gouba, G.Y. Avossevou, J. Phys. A 50, 475202 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Benenti, G. Casati, K. Saito, R. Whitney, Phys. Rep. 694, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Chen, Y. Gao, M. Galperin, Entropy 19, 472 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    B. Sothmann, M. Büttiker, EPL 99, 27001 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    A. Mari, A. Farace, V. Giovannetti, J. Phys. B 48, 175501 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    O. Vallée, M. Soares, Airy Functions and Applications to Physics (World Scientific, 2004)Google Scholar
  32. 32.
    G.P. Beretta, EPL 99, 20005 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    H.T. Quan, Phys. Rev. E 79, 041129 (2009)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    L. Jacak, P. Hawrylak, A. Wójs, Quantum Dots (Springer-Verlag, 1998)Google Scholar
  36. 36.
    C.M. Bender, D.C. Brody, B.K. Meister, Proc. R. Soc. London A 458, 1519 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal University of ABCSanto André, São PauloBrazil

Personalised recommendations