Advertisement

Analytical approach for computation of exact and analytic approximate solutions to the system of Lane-Emden-Fowler type equations arising in astrophysics

  • Randhir Singh
Regular Article
  • 54 Downloads

Abstract.

In this paper, we study the system of Lane-Emden-Fowler type equations which model many phenomena in mathematical physics and astrophysics. The equivalent Volterra integral forms of system of Lane-Emden-Fowler equations is considered. A reliable algorithm based on the optimal homotopy analysis method is employed for the exact and analytic approximate solutions to the Volterra integral forms of the system of equations. Convergence and error analysis of the proposed method are also discussed. The analytical results show that the present method gives a reliable algorithm for the approximate series solutions and the exact solutions of these systems.

References

  1. 1.
    R. Singh, J. Math. Chem. (2018)  https://doi.org/10.1007/s10910-018-0911-8
  2. 2.
    R. Singh, A.-M. Wazwaz, Commun. Math. Comput. Chem. 80, 369 (2018)Google Scholar
  3. 3.
    J.H. Lane, Am. J. Sci. Arts 50, 57 (1870)ADSCrossRefGoogle Scholar
  4. 4.
    R. Emden, Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme (B. Teubner, 1907)Google Scholar
  5. 5.
    A.-M. Wazwaz, Chem. Phys. Lett. 679, 132 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    A.M. Wazwaz, R. Rach, Kybernetes 40, 1305 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1967)Google Scholar
  8. 8.
    A.-M. Wazwaz, Appl. Math. Comput. 118, 287 (2001)MathSciNetGoogle Scholar
  9. 9.
    H. Singh, Astrophys. Space Sci. 363, 71 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    S. Lin, J. Theor. Biol. 60, 449 (1976)CrossRefGoogle Scholar
  11. 11.
    B. Gray, J. Theor. Biol. 82, 473 (1980)CrossRefGoogle Scholar
  12. 12.
    R. Duggan, A. Goodman, Bull. Math. Biol. 48, 229 (1986)CrossRefGoogle Scholar
  13. 13.
    A.-M. Wazwaz, Appl. Math. Comput. 161, 543 (2005)MathSciNetGoogle Scholar
  14. 14.
    S. Khuri, A. Sayfy, Math. Comput. Model. 52, 626 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Ebaid, J. Comput. Appl. Math. 235, 1914 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A.-M. Wazwaz, R. Rach, J.-S. Duan, Appl. Math. Comput. 219, 5004 (2013)MathSciNetGoogle Scholar
  17. 17.
    R. Singh, J. Kumar, G. Nelakanti, Sci. World J. 2014, 945872 (2014)Google Scholar
  18. 18.
    R. Singh, J. Kumar, G. Nelakanti, J. Appl. Math. Comput. 43, 409 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Singh, J. Kumar, Comput. Phys. Commun. 185, 1282 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    R. Singh, J. Kumar, J. Appl. Math. Comput. 44, 397 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Ravi Kanth, K. Aruna, Comput. Math. Appl. 60, 821 (2010)CrossRefGoogle Scholar
  22. 22.
    K. Parand, S. Khaleqi, Eur. Phys. J. Plus 131, 24 (2016)CrossRefGoogle Scholar
  23. 23.
    N. Das, R. Singh, A.-M. Wazwaz, J. Kumar, J. Math. Chem. 54, 527 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Singh, N. Das, J. Kumar, Eur. Phys. J. Plus 132, 251 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Danish, S. Kumar, S. Kumar, Comput. Chem. Eng. 36, 57 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Singh, A.-M. Wazwaz, Appl. Math. 10, 403 (2016)Google Scholar
  27. 27.
    R. Singh, S. Singh, A.-M. Wazwaz, J. Math. Chem. 54, 918 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    E. Doha, W. Abd-Elhameed, Y. Youssri, New Astron. 23, 113 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    W. Abd-Elhameed, E. Doha, A. Saad, M. Bassuony, Rev. Mex. Astron. Astrofís. 52, 83 (2016)ADSGoogle Scholar
  30. 30.
    W. Abd-Elhameed, Y. Youssri, E. Doha, Math. Sci. 9, 93 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    W. Abd-Elhameed, Eur. Phys. J. Plus 130, 52 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Youssri, W. Abd-Elhameed, E. Doha, Rom. J. Phys. 60, 1298 (2015)Google Scholar
  33. 33.
    W.M. Abd-Elhameed, Y. Youssri, E.H. Doha, Comput. Methods Differ. Equ. 2, 171 (2014)MathSciNetGoogle Scholar
  34. 34.
    A.-M. Wazwaz, Int. J. Comput. Math. 88, 3406 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A.-M. Wazwaz, R. Rach, J.-S. Duan, Math. Methods Appl. Sci. 37, 10 (2014)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    B. Muatjetjeja, C.M. Khalique, Math. Comput. Appl. 15, 325 (2010)MathSciNetGoogle Scholar
  37. 37.
    D. Flockerzi, K. Sundmacher, J. Phys.: Conf. Ser. 268, 012006 (2011)Google Scholar
  38. 38.
    A.M. Wazwaz, R. Rach, J.-S. Duan, Match 76, 511 (2016)Google Scholar
  39. 39.
    R. Rach, J.-S. Duan, A.-M. Wazwaz, J. Math. Chem. 52, 255 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    J.-S. Duan, R. Rach, A.-M. Wazwaz, Commun. Math. Comput. Chem. 73, 785 (2015)Google Scholar
  41. 41.
    S.J. Liao, Y. Tan, Stud. Appl. Math. 119, 297 (2007)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S.J. Liao, Nonlinear Anal.: Real World Appl. 10, 2455 (2009)MathSciNetCrossRefGoogle Scholar
  43. 43.
    S.-J. Liao, Int. J. Non-Linear Mech. 30, 371 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (CRC Press, 2003)Google Scholar
  45. 45.
    V. Marinca, N. Herişanu, Int. Commun. Heat Mass Transfer 35, 710 (2008)CrossRefGoogle Scholar
  46. 46.
    N. Herişanu, V. Marinca, Comput. Math. Appl. 60, 1607 (2010)MathSciNetCrossRefGoogle Scholar
  47. 47.
    V. Marinca, N. Herişanu, C. Bota, B. Marinca, Appl. Math. Lett. 22, 245 (2009)MathSciNetCrossRefGoogle Scholar
  48. 48.
    V. Marinca, N. Herişanu, I. Nemeş, Cent. Eur. J. Phys. 6, 648 (2008)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsBirla Institute of Technology MesraRanchiIndia

Personalised recommendations