Advertisement

Dynamics of axially symmetric anisotropic modified holographic Ricci dark energy model in Brans-Dicke theory of gravitation

  • K. Dasu Naidu
  • D. R. K. ReddyEmail author
  • Y. Aditya
Regular Article
  • 43 Downloads

Abstract.

In this paper, we have derived field equations of Brans-Dicke (Phys. Rev. 124, 925 (1961)) theory of gravitation with the help of an axially symmetric anisotropic Bianchi-type space-time in the presence of dark matter and anisotropic modified holographic Ricci dark energy. We have presented a cosmological model solving the field equations. We have used i) the hybrid expansion law, ii) a relation between metric potentials and iii) the modified holographic Ricci dark energy defined by Chen and Jing (Phys. Lett. B 679, 144 (2009)) to solve the field equations. We have determined the cosmological parameters, namely, EoS parameter, matter energy density, anisotropic dark energy density, Skewness parameter, deceleration and jerk parameters. A detailed physical discussion of these dynamical parameters is presented through a graphical representation. We observe that we have a quintessence model which exhibits a smooth transition from decelerated phase to an accelerated phase of the universe. This situation is quite in agreement with the scenario of modern cosmology.

References

  1. 1.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Nature 391, 51 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    S. Weinberg, arXiv:astro-ph/0005265Google Scholar
  5. 5.
    T. Padmanabhan, Phys. Rev. D 66, 02131 (2002)Google Scholar
  6. 6.
    T. Padmanabhan, Gen. Relativ. Gravit. 40, 529 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    S. Nojiri, S.D. Odintsov, Phys. Rev. D 562, 147 (2003)Google Scholar
  10. 10.
    B. Feng et al., Phys. Lett. B 607, 35 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A.Y. Kamenshchik et al., Phys. Lett. B 511, 265 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    M.C. Bento et al., Phys. Rev. D 66, 043507 (2002)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    V. Sahni, Y. Shtanov, J. Cosmol. Astropart. Phys. 11, 014 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S.D.H. Hsu, Phys. Lett. B 594, 13 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    M. Li, Phys. Lett. B 603, 1 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    R.G. Cai, Phys. Lett. B 657, 228 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    S. Capozziello, M. De Laurentis, arXiv:1108.6266v2 [gr-qc]Google Scholar
  20. 20.
    T. Harko et al., Phys. Rev. D 84, 024020 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    G. Hoof’t, arXiv:gr-qc/9310026Google Scholar
  22. 22.
    A. Cohen et al., Phys. Rev. Lett. 82, 4971 (1999)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Li, Phys. Lett. B 603, 1 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    C. Gao et al., Phys. Rev. D 79, 043511 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    L.N. Granda, A. Oliveros, Phys. Lett. B 669, 275 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    L.N. Granda, A. Oliveros, Phys. Lett. B 671, 199 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    S. Chen, J. Jing, Phys. Lett. B 679, 144 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    P.A.M. Dirac, Proc. R. Soc. London Ser. A, Math. Phys. Sci. 165, 199 (1938)ADSCrossRefGoogle Scholar
  29. 29.
    R.V. Wagoner, Phys. Rev. D 1, 3209 (1970)ADSCrossRefGoogle Scholar
  30. 30.
    K. Umezu et al., Phys. Rev. D 72, 044010 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 73, 103511 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    M. Biesiada, B. Malec, Mon. Not. R. Astron. Soc. 350, 644 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    M.R. Setare, Phys. Lett. B 642, 1 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    M.R. Setare, Phys. Lett. B 642, 421 (2006)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Jamil et al., Phys. Lett. B 679, 172 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    M. Sharif, A. Jawad, Astrophys. Space Sci. 337, 789 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    M. Kiran et al., Astrophys. Space Sci. 356, 407 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    K.S. Adhav et al., Astrophys. Space Sci. 353, 249 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    G. Ramesh, S. Umadevi, Astrophys. Space Sci. 361, 50 (2016)CrossRefGoogle Scholar
  40. 40.
    M.P.V.V. Bhaskara Rao et al., Can. J. Phys. 94, 1 (2016)CrossRefGoogle Scholar
  41. 41.
    M.V. Santhi et al., Can. J. Phys. 94, 578 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    D.R.K. Reddy et al., Astrophys. Space Sci. 361, 349 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    A. Jawad et al., Commun. Theor. Phys. 63, 453 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    V.U.M. Rao, U.Y. Divya Prasanthi, Eur. Phys. J. Plus 132, 64 (2017)CrossRefGoogle Scholar
  45. 45.
    M.V. Santhi et al., Can. J. Phys. 95, 179 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    M.V. Santhi et al., Can. J. Phys. 95, 381 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    D.R.K. Reddy, Can. J. Phys. 95, 145 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    C.B. Collins et al., Gen. Relativ. Gravit. 12, 805 (1983)ADSCrossRefGoogle Scholar
  49. 49.
    O. Akarsu et al., JCAP 01, 022 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    A. Pradhan et al., Indian J. Phys. 89, 503 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    M.V. Santhi et al., Astrophys. Space Sci. 361, 142 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    V.B. Johri, R. Sudharsan, Aust. J. Phys. 42, 215 (1989)ADSCrossRefGoogle Scholar
  53. 53.
    V.B. Johri, K. Desikan, Gen. Relativ. Gravit. 26, 1217 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    T. Chiba, T. Nakamura, Progr. Theor. Phys. 100, 1077 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    S. Sarkar, Astrophys. Space Sci. 350, 821 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    S. Sarkar, Astrophys. Space Sci. 352, 245 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    K. Das, T. Sultana, Astrophys. Space Sci. 361, 53 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    B. Mishra et al., Astrophys. Space Sci. 363, 86 (2018)ADSCrossRefGoogle Scholar
  59. 59.
    R.K. Knop et al., Astrophys. J. 598, 102 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    E. Komatsu et al., Astron. Astrophys. Suppl. Ser. 180, 330 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    P.A.R. Ade et al., Astron. Astrophys. 571, A16 (2014)CrossRefGoogle Scholar
  63. 63.
    V. Sahni et al., JETP Lett. 77, 201 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    C.P. Singh, P. Kumar, Astrophys. Space Sci. 361, 157 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsGMR Institute of TechnologyAndhra PradeshIndia
  2. 2.Department of Applied MathematicsAndhra UniversityVisahapatnamIndia
  3. 3.Advanced Analytical LaboratoryAndhra UniversityVisakhapatnamIndia
  4. 4.Department of MathematicsANITS (A)VisakhapatnamIndia

Personalised recommendations