Advertisement

Novel image encryption cryptosystem based on binary bit planes extraction and multiple chaotic maps

  • Arslan ShafiqueEmail author
  • Junaid Shahid
Regular Article

Abstract.

In recent years, a number of chaos-based image encryption schemes have been proposed. In digital images, pixel is considered as the smallest element. So, most of the image encryption schemes implement diffusion and permutation operation at the pixel level. The substitution process creates diffusion. It can be done by using the substitution box (S-box). Although the S-box plays a vital role in any cryptosystem, the S-box substitution takes too much time to substitute the pixels of an image of size \( 256 \times 256\) or more than \( 256 \times 256\) . So, in this paper, for the low time complexity, bit level permutation is performed by extracting the binary bit planes from the plaintext image. Bit level permutation has an ability to create confusion and diffusion at the same time. A new random image is introduced to create more diffusion. The chaotic cubic-logistic and logistic map are also used in the proposed cryptosystem. Experimental results are carried out to show the efficiency of the proposed cryptosystem.

References

  1. 1.
    B. Furht, D. Socek, A survey of multimedia security, Comprehensive report, 2003Google Scholar
  2. 2.
    A. Abusukhon, M. Talib, I. Ottoum, Int. J. Cyber-Secur. Digit. Forensics (IJCSDF) 1, 263 (2012)Google Scholar
  3. 3.
    Y.-C. Chen, L.-W. Chang, A secure and robust digital watermarking technique by the block cipher rc6 and secure hash algorithm, in Proceedings of 2001 International Conference on Image Processing, Vol. 2 (IEEE, 2001) pp. 518--521Google Scholar
  4. 4.
    B. Schneier, Applied Cryptography, Vol. 4 (John Wiley & Sons Inc, New York, 1996)Google Scholar
  5. 5.
    W. Stallings, Cryptography and Network Security, 4th edition (Pearson Education India, 2006)Google Scholar
  6. 6.
    R. Chandramouli, N. Memon, M. Rabbani, Encycl. Imaging Sci. Technol. 10, 0471443395 (2002)Google Scholar
  7. 7.
    M.J. Dworkin, E.B. Barker, J.R. Nechvatal, J. Foti, L.E. Bassham, E. Roback, J.F. Dray jr., Advanced encryption standard (aes), technical report, 2001Google Scholar
  8. 8.
    R.L. Rivest, A. Shamir, L.M. Adleman, Cryptographic communications system and method, Sept. 20, 1983Google Scholar
  9. 9.
    B. Furht, D. Kirovski, Multimedia Security Handbook (CRC Press, 2004)Google Scholar
  10. 10.
    H. Cheng, X. Li, IEEE Trans. Signal Process. 48, 2439 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zhou, K. Panetta, R. Cherukuri, S. Agaian, Proc. SPIE 7351, 73510F (2009)ADSCrossRefGoogle Scholar
  12. 12.
    N. Zhou, T. Dong, J. Wu, Opt. Commun. 283, 3037 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J. Fridrich, Int. J. Bifurcat. Chaos 8, 1259 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J.-I. Guo, A new chaotic key-based design for image encryption and decryption, in Proceedings of the 2000 IEEE International Symposium on Circuits and Systems, 2000, ISCAS 2000, Geneva, Vol. 4 (IEEE, 2000) pp. 49--52Google Scholar
  15. 15.
    S. Li, X. Zheng, Cryptanalysis of a chaotic image encryption method, in IEEE International Symposium on Circuits and Systems, 2002, ISCAS 2002, Vol. 2 (IEEE, 2002) p. IIGoogle Scholar
  16. 16.
    C.E. Shannon, Bell Syst. Tech. J. 28, 656 (1949)CrossRefGoogle Scholar
  17. 17.
    U.S. Department of Commerce/National Institute of Standards and Technology, FIPS 46-3: Data encryption standard (Des), 25 October 1999Google Scholar
  18. 18.
    A. Anees, A.M. Siddiqui, F. Ahmed, Commun. Nonlinear Sci. Numer. Simul. 19, 3106 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Anees, 3D Res. 6, 24 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Gao, Z. Chen, Phys. Lett. A 372, 394 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. Anees, A.M. Siddiqui, J. Ahmed, I. Hussain, Nonlinear Dyn. 75, 807 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Salleh, S. Ibrahim, I.F. Isnin, Enhanced chaotic image encryption algorithm based on baker’s map, in Proceedings of the 2003 International Symposium on Circuits and Systems, 2003, ISCAS’03, Vol. 2 (IEEE, 2003) p. IIGoogle Scholar
  23. 23.
    F. Auli-Llinas, M.W. Marcellin, IEEE Trans. Image Process. 21, 1920 (2012)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Zhou, K. Panetta, S. Agaian, C.P. Chen, IEEE Trans. Cybern. 43, 515 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Agaian, J. Astola, K. Egiazarian, P. Kuosmanen, Signal Process. 41, 101 (1995)CrossRefGoogle Scholar
  26. 26.
    Y. Zhou, K. Panetta, S. Agaian, C.P. Chen, Opt. Commun. 285, 594 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    D.Z. Gevorkian, K.O. Egiazarian, S.S. Agaian, J.T. Astola, O. Vainio, IEEE Trans. Signal Process. 43, 286 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    J.-W. Han, C.-S. Park, D.-H. Ryu, E.-S. Kim, Opt. Eng. 38, 47 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    M. Podesser, H.-P. Schmidt, A. Uhl, Selective bitplane encryption for secure transmission of image data in mobile environments, in CD-ROM Proceedings of the 5th IEEE Nordic Signal Processing Symposium (NORSIG 2002), 2002Google Scholar
  30. 30.
    D. Moon, Y. Chung, S.B. Pan, K. Moon, K.I. Chung, ETRI J. 28, 444 (2006)CrossRefGoogle Scholar
  31. 31.
    T. Xiang, K.-w. Wong, X. Liao, Chaos 17, 023115 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    G. Chen, Y. Mao, C.K. Chui, Chaos Solitons Fractals 21, 749 (2004)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    F. Sun, S. Liu, Z. Li, Z. Lü, Chaos Solitons Fractals 38, 631 (2008)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    X. Wang, L. Teng, X. Qin, Signal Process. 92, 1101 (2012)CrossRefGoogle Scholar
  35. 35.
    I. Hussain, A. Anees, M. Aslam, R. Ahmed, N. Siddiqui, Eur. Phys. J. Plus 133, 167 (2018)CrossRefGoogle Scholar
  36. 36.
    O. Mirzaei, M. Yaghoobi, H. Irani, Nonlinear Dyn. 67, 557 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Ahmad, S.O. Hwang, Nonlinear Dyn. 82, 1839 (2015)CrossRefGoogle Scholar
  38. 38.
    X.-Y. Wang, L. Yang, R. Liu, A. Kadir, Nonlinear Dyn. 62, 615 (2010)CrossRefGoogle Scholar
  39. 39.
    X. Wang, Q. Wang, Y. Zhang, Nonlinear Dyn. 79, 1141 (2015)CrossRefGoogle Scholar
  40. 40.
    X. Wang, H.-l. Zhang, Nonlinear Dyn. 83, 333 (2016)CrossRefGoogle Scholar
  41. 41.
    J.-C. Yen, J.-I. Guo, Design of a new signal security system, in IEEE International Symposium on Circuits and Systems, 2002, ISCAS 2002, Vol. 4 (IEEE, 2002) p. IVGoogle Scholar
  42. 42.
    H.-C. Chen, J.-I. Guo, L.-C. Huang, J.-C. Yen, EURASIP J. Adv. Signal Process. 2003, 902741 (2003)CrossRefGoogle Scholar
  43. 43.
    S. Li, X. Zheng, On the security of an image encryption method, in Proceedings of the 2002 International Conference on Image Processing, 2002, Vol. 2 (IEEE, 2002) p. IIGoogle Scholar
  44. 44.
    C. Li, S. Li, G. Chen, G. Chen, L. Hu, EURASIP J. Adv. Signal Process. 2005, 962703 (2005)CrossRefGoogle Scholar
  45. 45.
    P. Verhulst, La loi d’accroissement de la population, Nouv. Mem. Acad. R. Soc. Belle-Lett. Bruxelles, Vol. 18, no. 1 (1845)Google Scholar
  46. 46.
    Z.-l. Zhu, W. Zhang, K.-w. Wong, H. Yu, Inf. Sci. 181, 1171 (2011)CrossRefGoogle Scholar
  47. 47.
    N. Elabady, H. Abdalkader, M. Moussa, S.F. Sabbeh, Image encryption based on new one-dimensional chaotic map, in 2014 International Conference on Engineering and Technology (ICET) (IEEE, 2014) pp. 1--6Google Scholar
  48. 48.
    W.K. Lee, R.C.-W. Phan, W.-S. Yap, B.-M. Goi, Nonlinear Dyn. 92, 575 (2018)CrossRefGoogle Scholar
  49. 49.
    X. Wang, Q. Wang, Nonlinear Dyn. 75, 567 (2014)CrossRefGoogle Scholar
  50. 50.
    S. Behnia, A. Akhshani, S. Ahadpour, H. Mahmodi, A. Akhavan, Phys. Lett. A 366, 391 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Wang, K.-W. Wong, X. Liao, G. Chen, Appl. Soft Comput. 11, 514 (2011)CrossRefGoogle Scholar
  52. 52.
    C. Fu, B.-b. Lin, Y.-s. Miao, X. Liu, J.-j. Chen, Opt. Commun. 284, 5415 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    G. Zhang, Q. Liu, Opt. Commun. 284, 2775 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    T. Shah, I. Hussain, M.A. Gondal, H. Mahmood, Int. J. Phys. Sci. 6, 4110 (2011)Google Scholar
  55. 55.
    J. Munoz-Rodriguez, Imaging Sci. J. 58, 61 (2010)CrossRefGoogle Scholar
  56. 56.
    C. Zhu, Opt. Commun. 285, 29 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    I. Hussain, N.A. Azam, T. Shah, Opt. Laser Technol. 61, 50 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    P.P. Dang, P.M. Chau, IEEE Trans. Consum. Electron. 46, 395 (2000)CrossRefGoogle Scholar
  59. 59.
    J.S. Khan, A. ur Rehman, J. Ahmad, Z. Habib, A new chaos-based secure image encryption scheme using multiple substitution boxes, in 2015 Conference on Information Assurance and Cyber Security (CIACS) (IEEE, 2015) pp. 16--21Google Scholar
  60. 60.
    F. Ahmed, M. Siyal, V.U. Abbas, A perceptually scalable and jpeg compression tolerant image encryption scheme, in 2010 Fourth Pacific-Rim Symposium on Image and Video Technology (PSIVT) (IEEE, 2010) pp. 232--238Google Scholar
  61. 61.
    F. Ahmed, A. Anees, V.U. Abbas, M.Y. Siyal, Wirel. Pers. Commun. 77, 2771 (2014)CrossRefGoogle Scholar
  62. 62.
    S. Kassim, H. Hamiche, S. Djennoune, M. Bettayeb, Nonlinear Dyn. 88, 2473 (2017)CrossRefGoogle Scholar
  63. 63.
    M. Matsui, Lect. Notes Comput. Sci. 765, 386 (1994)CrossRefGoogle Scholar
  64. 64.
    E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard (Springer Verlag, New York, Inc., 1993)Google Scholar
  65. 65.
    B. Schneier, Applied Cryptography (John Wiley & Sons, 1996)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringHITEC UniversityTaxilaPakistan

Personalised recommendations