Advertisement

Cosmic Microwave Background and the issue of a fundamental preferred frame

  • M. ConsoliEmail author
  • A. Pluchino
Regular Article

Abstract.

The possibility to correlate ether-drift measurements in laboratory and direct CMB observations with satellites in space would definitely confirm the existence of a fundamental preferred frame for relativity. Today, the small residuals observed so far (from Michelson-Morley onward) are just considered typical instrumental effects in experiments with better and better sensitivity. Though, if the velocity of light propagating in the various interferometers is not exactly the same parameter c of Lorentz transformations, nothing would really prevent to observe an ether drift. Thus, for the Earth cosmic velocity v = 370 km/s, we argue that a fundamental 10-15 light anisotropy, as presently observed in vacuum and in solid dielectrics, is revealing a 10-9 difference in the vacuum effective refractivity between an apparatus in an ideal freely falling frame and an apparatus on the Earth surface. In this perspective, the stochastic nature of the physical vacuum could also explain the irregular character of the signal and the observed substantial reduction from its instantaneous 10-15 value to its statistical average 10-18 (or smaller). For the same v = 370 km/s the different refractivities, respectively, \( {O}(10^{-4})\) and \( {O}(10^{-5})\) for air or helium at atmospheric pressure, could also explain the observed light anisotropy, respectively \( {O}(10^{-10})\) and \( {O}(10^{-11})\) . However, for consistency, one should also understand the physical mechanism which enhances the signal in weakly bound gaseous matter but remains ineffective in solid dielectrics where the refractivity is \( {O}(1)\) . This mechanism is naturally identified in a non-local, tiny temperature gradient of a fraction of millikelvin which is found in all classical experiments and might ultimately be related to the CMB temperature dipole of ±3 mK or reflect the fundamental energy flow associated with a Lorentz-non-invariant vacuum state. The importance of the issue would deserve more stringent tests with dedicated experiments and significant improvements in the data analysis.-1

References

  1. 1.
    J.C. Mather, Rev. Mod. Phys. 79, 1331 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    G.F. Smoot, Rev. Mod. Phys. 79, 1349 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    M. Yoon, D. Huterer, Astrophys. J. Lett. 813, L18 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    G. ’t Hooft, Search of the Ultimate Building Blocks (Cambridge University Press, 1997) p. 70Google Scholar
  5. 5.
    M. Consoli, P.M. Stevenson, Int. J. Mod. Phys. A 15, 133 (2000)ADSGoogle Scholar
  6. 6.
    M. Consoli, Found. Phys. 45, 22 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and all that (W. A. Benjamin, New York, 1964)Google Scholar
  8. 8.
    S. Liberati, S. Sonego, M. Visser, Ann. Phys. 298, 167 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    V. Scarani et al., Phys. Lett. A 276, 1 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Hardy, Phys. Rev. Lett. 68, 2981 (1992)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A.A. Michelson, E.W. Morley, Am. J. Sci. 34, 333 (1887)ADSCrossRefGoogle Scholar
  12. 12.
    D.C. Miller, Rev. Mod. Phys. 5, 203 (1933)ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Michelson et al., Astrophys. J. 68, 341 (1928)ADSCrossRefGoogle Scholar
  14. 14.
    K.K. Illingworth, Phys. Rev. 30, 692 (1927)ADSCrossRefGoogle Scholar
  15. 15.
    G. Joos, Ann. Phys. (Leipzig) 7, 385 (1930)ADSCrossRefGoogle Scholar
  16. 16.
    H. Müller et al., Appl. Phys. B 77, 719 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    M. Nagel et al., Nat. Commun. 6, 8174 (2015)CrossRefGoogle Scholar
  18. 18.
    W.M. Hicks, Philos. Mag. 3, 9 (1902)CrossRefGoogle Scholar
  19. 19.
    A. Brillet, J.L. Hall, Phys. Rev. Lett. 42, 549 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    S. Herrmann et al., Phys. Rev. D 80, 10511 (2009)MathSciNetGoogle Scholar
  21. 21.
    Ch. Eisele, A. Newsky, S. Schiller, Phys. Rev. Lett. 103, 090401 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    M. Nagel, arXiv:1308.5582 [physics.optics]Google Scholar
  23. 23.
    Q. Chen, E. Magoulakis, S. Schiller, Phys. Rev. D 93, 022003 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J. Shamir, R. Fox, Nuovo Cimento B 62, 258 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    J.C. Maxwell, Ether, Encyclopaedia Britannica, 9th edition (1878)Google Scholar
  26. 26.
    R.S. Shankland et al., Rev. Mod. Phys. 27, 167 (1955)ADSCrossRefGoogle Scholar
  27. 27.
    G. Joos, Phys. Rev. 45, 114 (1934)ADSCrossRefGoogle Scholar
  28. 28.
    M. Consoli, C. Matheson, A. Pluchino, Eur. Phys. J. Plus 128, 71 (2013) arXiv:1302.3508 [physics]CrossRefGoogle Scholar
  29. 29.
    M. Consoli, A. Pluchino, A. Rapisarda, S. Tudisco, Physica A 394, 61 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison Wesley Publ. Co., 1963)Google Scholar
  31. 31.
    L. Onsager, Nuovo Cimento, Suppl. 6, 279 (1949)MathSciNetCrossRefGoogle Scholar
  32. 32.
    G.L. Eyink, K.R. Sreenivasan, Rev. Mod. Phys. 78, 87 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    E.T. Whittaker, A History of the Theories of Aether and Electricity (Dover Publications, Inc. New York, 1989)Google Scholar
  34. 34.
    O.V. Troshkin, Physica A 168, 881 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    H.E. Puthoff, arXiv:0808.3401 [physics.gen-ph]Google Scholar
  36. 36.
    T.D. Tsankov, Classical Electrodynamics and the Turbulent Aether Hypothesis, (2009) unpublishedGoogle Scholar
  37. 37.
    L.A. Saul, Phys. Lett. A 314, 472 (2003)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    E. Nelson, Phys. Rev. 150, 1079 (1966)ADSCrossRefGoogle Scholar
  39. 39.
    P. Jizba, H. Kleinert, Phys. Rev. D 82, 085016 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    P. Jizba, F. Scardigli, arXiV:1301.4091v2 [hep-th]Google Scholar
  41. 41.
    H. Müller, Phys. Rev. D 71, 045004 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    M. Consoli, L. Pappalardo, Gen. Relativ. Gravit. 42, 2585 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    V. Guerra, R. de Abreu, Eur. J. Phys. 26, S117 (2005)CrossRefGoogle Scholar
  44. 44.
    U. Leonhardt, P. Piwnicki, Phys. Rev. A 60, 4301 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    J.M. Jauch, K.M. Watson, Phys. Rev. 74, 950 (1948)ADSCrossRefGoogle Scholar
  46. 46.
    R.J. Kennedy, Phys. Rev. 47, 965 (1935)ADSCrossRefGoogle Scholar
  47. 47.
    J.J. Nassau, P.M. Morse, Astrophys. J. 65, 73 (1927)ADSCrossRefGoogle Scholar
  48. 48.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959) chapt. IIIGoogle Scholar
  49. 49.
    J.C.H. Fung et al., J. Fluid Mech. 236, 281 (1992)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 4 (1940) English translation in Proc. R. Soc. A 434Google Scholar
  51. 51.
    R. Tomaschek, Astron. Nachr. 219, 301 (1923) English translationADSCrossRefGoogle Scholar
  52. 52.
    A. Piccard, E. Stahel, J. Phys. Le Radium IX, No.2 (1928)Google Scholar
  53. 53.
    A.A. Michelson, F.G. Pease, F. Pearson, Nature 123, 88 (1929)ADSCrossRefGoogle Scholar
  54. 54.
    A.A. Michelson, F.G. Pease, F. Pearson, J. Opt. Soc. Am. 18, 181 (1929)ADSCrossRefGoogle Scholar
  55. 55.
    F.G. Pease, Publ. Astron. Soc. Pacific XLII, 197 (1930)ADSCrossRefGoogle Scholar
  56. 56.
    Ch. Eisele et al., Opt. Commun. 281, 1189 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    J.A. Stone, A. Stejskal, Metrologia 41, 189 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    T.S. Jaseja et al., Phys. Rev. 133, A1221 (1964)CrossRefGoogle Scholar
  59. 59.
    M. Consoli, A. Pluchino, A. Rapisarda, EPL 113, 19001 (2016) arXiv:1601.06518 [astro-ph.CO]ADSCrossRefGoogle Scholar
  60. 60.
    C. Barcelo, S. Liberati, M. Visser, Class. Quantum Grav. 18, 3595 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    M. Visser, C. Barcelo, S. Liberati, Gen. Relativ. Gravit. 34, 1719 (2002)CrossRefGoogle Scholar
  62. 62.
    G.E. Volovik, Phys. Rep. 351, 195 (2001)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    R. Schützhold, Class. Quantum Grav. 25, 114027 (2008)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    M. Consoli, Class. Quantum Grav. 26, 225008 (2009)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    C.D. Hoyle et al., Phys. Rev. D 70, 042004 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    H. Yilmaz, Phys. Rev. 111, 1417 (1958)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    B.O.J. Tupper, Nuovo Cimento B 19, 135 (1974)ADSGoogle Scholar
  68. 68.
    B.O.J. Tupper, Lett. Nuovo Cimento 14, 627 (1974)CrossRefGoogle Scholar
  69. 69.
    R.P. Feynman, in Superstrings: A Theory of Everything?, edited by P.C.W. Davies, J. Brown (Cambridge University Press, 1997) p. 201Google Scholar
  70. 70.
    R. D’E. Atkinson, Proc. R. Soc. 272, 60 (1963)CrossRefGoogle Scholar
  71. 71.
    K. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy (W. W. Norton and Co. Inc, New York and London, 1994) see chapt. 11, What is Reality?Google Scholar
  72. 72.
    R.J. Cook, Am. J. Phys. 72, 214 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    A.S. Eddington, Space, Time and Gravitation (Cambridge University Press, 1920)Google Scholar
  74. 74.
    A.M. Volkov, A.A. Izmest’ev, G.V. Skrotski, Sov. Phys. JETP 32, 686 (1971)ADSGoogle Scholar
  75. 75.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, 1971) p. 257Google Scholar
  76. 76.
    J. Broekaert, Found. Phys. 38, 409 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    D.A. Jennings et al., J. Res. Nat. Bur. Stand. 92, 11 (1987)CrossRefGoogle Scholar
  78. 78.
    K.R. Sreenivasan, Rev. Mod. Phys. 71, S383 (1999) centenary volumeCrossRefGoogle Scholar
  79. 79.
    C. Beck, Phys. Rev. Lett. 98, 064502 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, 2009)Google Scholar
  81. 81.
    C. Lämmerzahl et al., Class. Quantum Grav. 18, 2499 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93, 250602 (2004)ADSCrossRefGoogle Scholar
  83. 83.
    M. Consoli, E. Costanzo, Eur. Phys. J. C 54, 285 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    M. Consoli, E. Costanzo, Eur. Phys. J. C 55, 469 (2008)ADSCrossRefGoogle Scholar
  85. 85.
    Y.B. Zeldovich, Sov. Phys. Usp. 11, 381 (1968)ADSCrossRefGoogle Scholar
  86. 86.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  87. 87.
    G. Jannes, G.E. Volovik, JETP Lett. 96, 215 (2012)ADSCrossRefGoogle Scholar
  88. 88.
    S. Finazzi, S. Liberati, L. Sindoni, Phys. Rev. Lett. 108, 071101 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica NucleareSezione di CataniaCataniaItaly
  2. 2.Dipartimento di Fisica e Astronomia dell’Università di CataniaCataniaItaly

Personalised recommendations