Advertisement

Ricci dark energy model with bulk viscosity

  • C. P. SinghEmail author
  • Ajay Kumar
Regular Article

Abstract.

In order to explore the possibility of bulk viscosity as a possible candidate of dark energy to explain the accelerating universe, we investigate the dissipative processes in the holographic Ricci dark energy (HRDE) model within the framework of the standard Eckart theory of relativistic thermodynamics. We assume that the flat Friedmann-Robertson-Walker universe is filled with pressureless dark matter and viscous HRDE. We obtain the exact solutions of non-viscous and viscous HRDE models, respectively. We plot the evolution of the scale factor and deceleration parameter to observe the transition phase in the viscous case. We also discuss two geometrical diagnostics, namely the statefinder and Om to discriminate from other existing dark energy models. In the non-viscous HRDE model, the power-law form of expansion is obtained which gives the constant deceleration parameter and statefinder pair. It does not show phase transition. In the viscous HRDE model, we consider all possible forms of bulk viscous coefficient (with constant or general form of viscous terms) and discuss the cosmological evolution in detail. We obtain the exponential expansion of the scale factor which gives the time-dependent deceleration parameter and statefinder pair. The model shows the transition from the decelerated phase to the accelerated phase depending on the values of the viscous term. It starts to accelerate in the past for large values of the viscous term. The trajectory of the statefinder pair shows that for small values of the viscous term, the trajectory is curved and starts from quintessence in early time and approaches to \(\Lambda\)CDM model in late time. It is also observed that for large values of the viscous term, it behaves like the Chaplygin gas in early time but approaches to \(\Lambda\)CDM model in late time. We also plot the trajectory of the deceleration parameter, statefinder pair and Om with the model parameter to observe the evolutionary behavior of the universe. It also shows a similar behavior except for the fact that it only behaves as quintessence in the past but approaches to \(\Lambda\)CDM or the steady state model in late time. The results of viscous HRDE models show that the recent acceleration is well explained with the viscous term.

References

  1. 1.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Nature 391, 51 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M. Tegmark et al., Astrophys. J. 606, 702 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    J. Silk, Ann. Phys. (Berlin) 15, 75 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Bergstrom, Ann. Phys. (Berlin) 524, 479 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    C.S. Frenk, S.D.M. White, Ann. Phys. (Berlin) 524, 507 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M. Vogelsberger et al., Mon. Not. R. Astron. Soc. 460, 1399 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    P.J.E. Peebles, B. Ratra, Astrophys. J. Lett. 325, L17 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    B. Ratra, P.E.J. Peebles, Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Carroll, Phys. Rev. Lett. 81, 3067 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Turner, Int. J. Mod. Phys. A 17, 180 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    A. Sen, JHEP 07, 065 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    T. Padmanabhan, Phys. Rev. D 66, 021301 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    S.D.H. Hsu, Phys. Lett. B 594, 13 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Li, Phys. Lett. B 603, 1 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    R.G. Cai, Phys. Lett. B 657, 228 (2007)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    G. ’t Hooft, arXiv:gr-qc/9310026 (1993)Google Scholar
  30. 30.
    L. Susskind, J. Math. Phys. 36, 6377 (1995)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Bousso, Class. Quantum Grav. 17, 997 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    H. Wei, S.N. Zhang, arXiv:0707.2129 (2007)Google Scholar
  33. 33.
    C. Gao, F. Wu, X. Chen, Phys. Rev. D 79, 043511 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    C.J. Feng, Phys. Lett. B 670, 231 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    L. Xu, W. Li, J. Lu, Mod. Phys. Lett. A 24, 1355 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    C.J. Feng, X.Z. Li, Phys. Lett. B 679, 151 (2009)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    C.J. Feng, Phys. Lett. B 676, 168 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    C.J. Feng, X.Z. Li, Phys. Lett. B 680, 184 (2009)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    C.J. Feng, X. Zhang, Phys. Lett. B 680, 399 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    C.J. Feng, Phys. Lett. B 672, 94 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    X. Zhang, Phys. Rev. D 79, 103509 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    S. Chattopadhyay, Eur. Phys. J. Plus 126, 130 (2011)CrossRefGoogle Scholar
  43. 43.
    K.Y. Kim, H.W. Lee, Y.S. Myung, Gen. Relativ. Gravit. 43, 1095 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    I. Durán, D. Pavón, Phys. Rev. D 83, 023504 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    H. Saadat, Int. J. Theor. Phys. 51, 731 (2012)MathSciNetCrossRefGoogle Scholar
  46. 46.
    T.F. Fu, J.F. Zhang, J.Q. Chen, X. Zhang, Eur. Phys. J. C 72, 1932 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    L.P. Chimento, M.G. Richarte, Eur. Phys. J. C 73, 2352 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    S. Del Campo, J.C. Fabris, R. Herrera, W. Zimdhal, Phys. Rev. D 87, 123002 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    S. Chattopadhyay, Proc. Natl. Acad. Sci., India, Sect. A: Phys. Sci. 84, 87 (2014)CrossRefGoogle Scholar
  50. 50.
    C. Eckart, Phys. Rev. 58, 919 (1940)ADSCrossRefGoogle Scholar
  51. 51.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Vol. 6 (Butterworth Heinermann Ltd. Oxford, 1987)Google Scholar
  52. 52.
    W. Israel, J.M. Stewart, Phys. Lett. A 58, 213 (1976)ADSCrossRefGoogle Scholar
  53. 53.
    O. Grøn, Astrophys. Space Sci. 173, 191 (1990)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    C.P. Singh, Pramana J. Phys. 71, 33 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    I. Brevik, S.D. Odintsov, Phys. Rev. D 65, 067302 (2002)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    I. Brevik, O. Gorbunova, Gen. Relativ. Gravit. 37, 2039 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    J. Ren, X.H. Meng, Phys. Lett. B 633, 1 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    J. Ren, X.H. Meng, Phys. Lett. B 636, 5 (2006)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    I. Brevik, E. Elizalde, O. Gorbunova, A.V. Timoshkin, Eur. Phys. J. C 52, 223 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    X.H. Meng, J. Ren, M.G. Hu, Commun. Theor. Phys. 47, 379 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    B. Li, J.D. Barrow, Phys. Rev. D 79, 103521 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    X.H. Meng, X. Dou, Commun. Theor. Phys. 52, 377 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    I. Brevik, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Eur. Phys. J. C 69, 563 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    I. Brevik, O. Gorbunova, D. Saez-Gomez, Gen. Relativ. Gravit. 42, 1513 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    I. Brevik, V.V. Obukhov, A.V. Timoshkin, Astrophys. Space Sci. 355, 399 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    C.P. Singh, P. Kumar, Eur. Phys. J. C 74, 3070 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    A. Sasidharan, T.K. Mathew, Eur. Phys. J. C 75, 348 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    M.G. Hu, X.-H. Meng, Phys. Lett. B 635, 186 (2006)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    M. Cataldo, N. Cruz, S. Lepe, Phys. Lett. B 619, 5 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    N. Cruz et al., Phys. Lett. B 646, 177 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    C.J. Feng, X.-Z. Li, Phys. Lett. B 680, 355 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77, 201 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    U. Alam et al., Mon. Not. R. Astron. Soc. 344, 1057 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    A. Avelino, U. Nucamendi, JCAP 04, 006 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    B. Wu Ya, S. Li, M.H. Fu, J. He, Gen. Relativ. Gravit. 39, 653 (2007)ADSCrossRefGoogle Scholar
  76. 76.
    V. Sahni, A. Shaleloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsDelhi Technological UniversityDelhiIndia

Personalised recommendations