Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative

  • Saif Ullah
  • Muhammad Altaf KhanEmail author
  • Muhammad Farooq
Regular Article


Recently a new fractional derivative with non-local and non-singular kernel was proposed by Atangana and Baleanu. In this paper, a fractional hepatitis B virus model with Atangana-Baleanu derivative (AB derivative) is formulated. Initially, we present the model equilibria and basic reproduction number. The local stability of the disease-free equilibrium point is proved using Matignon’s conditions. The fixed-point theory is applied to show the existence and uniqueness of solutions for the fractional HBV disease model. A numerical scheme using Adams-Bashforth method for solving the proposed fractional model involving the AB derivative is presented. Finally, numerical simulations are performed in order to validate the importance of the arbitrary order derivative. The fractional-order derivative provides more information about the complexity of the dynamics of the proposed HBV model.


  1. 1.
    R. Palmer Beasley, Chia-Chin Lin, Lu-Yu Hwang, Chia-Siang Chien, The Lancet 318, 1129 (1981)CrossRefGoogle Scholar
  2. 2.
    Lan Zou, Weinian Zhang, Shigui Ruan, J. Theor. Biol. 262, 330 (2010)CrossRefGoogle Scholar
  3. 3.
    Devin Razavi-Shearer, Ivane Gamkrelidze, Mindie H. Nguyen, Ding-Shinn Chen, Pierre Van Damme, Zaigham Abbas, Maheeba Abdulla, Antoine Abou Rached, Danjuma Adda, Inka Aho et al., The Lancet Gastroenterol. Hepatol. 3, 383 (2018)CrossRefGoogle Scholar
  4. 4.
    Graham F. Medley, Nathan A. Lindop, W. John Edmunds, D. James Nokes, Nat. Med. 7, 619 (2001)CrossRefGoogle Scholar
  5. 5.
    Simon Thornley, Chris Bullen, Mick Roberts, J. Theor. Biol. 254, 599 (2008)CrossRefGoogle Scholar
  6. 6.
    Muhammad Altaf Khan, Saeed Islam, Muhammad Arif et al., BioMed. Res. Int. 2013, 150681 (2013)Google Scholar
  7. 7.
    Muhammad Altaf Khan, Saeed Islam, Gul Zaman, Appl. Math. Comput. 331, 378 (2018)MathSciNetGoogle Scholar
  8. 8.
    Kalyan Manna, Siddhartha P. Chakrabarty, Comput. Appl. Math. 36, 525 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khalid Hattaf, Noura Yousfi, Comput. Math. Appl. 69, 31 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hui-Fang Hung, Ya-Chuan Wang, Amy Ming-Fang Yen, Hsiu-Hsi Chen, Stoch. Environ. Res. Risk Assess. 28, 611 (2014)CrossRefGoogle Scholar
  11. 11.
    Igor Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Elsevier, 1999)Google Scholar
  12. 12.
    Stefan G. Samko, Anatoly A. Kilbas, Oleg I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Yverdon, 1993)Google Scholar
  13. 13.
    Michele Caputo, Mauro Fabrizio, Progr. Fract. Differ. Appl. 1, 1 (2015)Google Scholar
  14. 14.
    Abdon Atangana, Dumitru Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  15. 15.
    Abdon Atangana, Ilknur Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Badr Saad T. Alkahtani, Chaos, Solitons Fractals 89, 547 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Abdon Atangana, Kolade M. Owolabi, Math. Model. Nat. Phenom. 13, 3 (2018)CrossRefGoogle Scholar
  18. 18.
    Obaid Jefain Julaighim Algahtani, Chaos, Solitons Fractals 89, 552 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Badr Saad T. Alkahtani, Abdon Atangana, Ilknur Koca, J. Nonlinear Sci. Appl. 10, 3191 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    José Francisco Gómez-Aguilar, Abdon Atangana, Fractal Fraction. 2, 10 (2018)CrossRefGoogle Scholar
  21. 21.
    Dumitru Baleanu, Amin Jajarmi, Mojtaba Hajipour, Nonlinear Dyn. (2018)
  22. 22.
    Berat Karaagac, Eur. Phys. J. Plus 133, 54 (2018)CrossRefGoogle Scholar
  23. 23.
    Ilknur Koca, Eur. Phys. J. Plus 133, 100 (2018)CrossRefGoogle Scholar
  24. 24.
    M.A. Taneco-Hernandez, R.F. Escobar-Jimenez, V.H. Olivares-Peregrino, V.F. Morales-Delgado, J.F. Gomez-Aguilar, J. Nonlinear Sci. Appl. 11, 994 (2018)CrossRefGoogle Scholar
  25. 25.
    S.M. Salman, A.M. Yousef, J. Egypt. Math. Soc. 25, 445 (2017)CrossRefGoogle Scholar
  26. 26.
    Kolade M. Owolabi, SpringerPlus 5, 1643 (2016)CrossRefGoogle Scholar
  27. 27.
    Angel A. Tateishi, Haroldo V. Ribeiro, Ervin K. Lenzi, Front. Phys. 5, 1 (2017)CrossRefGoogle Scholar
  28. 28.
    Abdon Atangana, Physica A 505, 688 (2018)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Abdon Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  30. 30.
    Denis Matignon, Stability results for fractional differential equations with applications to control processing, in Computational Engineering in Systems Applications, Vol. 2, (IMACS, IEEE-SMC Lille, France, 1996) pp. 963--968Google Scholar
  31. 31.
    Pauline Van den Driessche, James Watmough, Math. Biosci. 180, 29 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    E. Ahmed, A.M.A. El-Sayed, Hala A.A. El-Saka, Phys. Lett. A 358, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Saif Ullah
    • 1
  • Muhammad Altaf Khan
    • 2
    Email author
  • Muhammad Farooq
    • 1
  1. 1.Department of MathematicsUniversity of PeshawarPeshawar, KPPakistan
  2. 2.Department of MathematicsCity University of Science and Information TechnologyPeshawar, KPPakistan

Personalised recommendations