Advertisement

Conserved schemes with high pressure ratio, high particle density ratio and self-similar method

  • Mahmoud A. E. AbdelrahmanEmail author
Regular Article

Abstract.

The paper proposes a numerical investigation for three conserved schemes when applied to the nonlinear ultra-relativistic Euler equations with an initial high pressure ratio and with an initial high particle density ratio. The results show that two of these schemes work efficiently and the third one may present inaccurate results even applied over a very delicate mesh. Several problems of the relativistic Euler system have self-similar solutions which can be solved by more efficient techniques. We also introduce a representation for self-similar ultra-relativistic Euler equations, which can be solved by the proposed schemes in this article and does not need to reconstruct schemes. Numerical tests are given for the one-dimensional shock tube problems to deal with the problem under consideration. These tests display that increasing the order of accuracy does not help much in upgrading the results. It is also indicated that one-dimensional results solved by self-similar ultra-relativistic Euler equations are almost identical to the exact solutions.

References

  1. 1.
    L. Del Zanna, N. Bucciantini, Astron. Astrophys. 390, 1177 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R. Donat, A. Marquina, J. Comput. Phys. 125, 42 (1996)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Eulderink, G. Mellema, Astron. Astrophys. Suppl. 110, 587 (1995)ADSGoogle Scholar
  4. 4.
    A. Lucas-Serrano, J.A. Font, J.M. Ibez, J.M. Mart, Astron. Astrophys. 428, 703 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    V. Schneider, U. Katscher, D.H. Rischke, B. Waldhauser, J.A. Maruhn, C.-D. Munz, J. Comput. Phys. 105, 92 (1993)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J.Y. Yang, M.H. Chen, I.N. Tsai, J.W. Chang, J. Comput. Phys. 136, 19 (1997)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Kunik, S. Qamar, G. Warnecke, J. Comput. Phys. 187, 572 (2003)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Kunik, S. Qamar, G. Warnecke, SIAM J. Sci. Comput. 26, 196 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Kunik, S. Qamar, G. Warnecke, Numer. Math. 97, 159 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S.R. deGroot, W.A. van Leeuven, Ch.G. van Weert, Relativistic Kinetic Theory: Principles and Applications (North-Holland, Amsterdam, 1980)Google Scholar
  11. 11.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations, 1st edition (Springer, 1994)Google Scholar
  12. 12.
    M.A.E. Abdelrahman, M. Kunik, J. Comput. Phys. 275, 213 (2014)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M.A.E. Abdelrahman, Comp. Appl. Math., (2017) DOI 10.1007/s40314-017-0527-9Google Scholar
  14. 14.
    M.A.E. Abdelrahman, M. Kunik, J. Math. Anal. Appl. 409, 1140 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.A.E. Abdelrahman, Nonlinear Anal. 155, 140 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Tang, T. Liu, J. Comput. Phys. 218, 451 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    R. Samtaney, J. Comput. Phys. 132, 327 (1997)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S.K. Godunov, Mat. Sb. 47, 271 (1959)MathSciNetGoogle Scholar
  19. 19.
    R.J. LeVeque, Numerical Methods for Conservation Laws (Birkhauser Verlag, Basel, 1992)Google Scholar
  20. 20.
    E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009)Google Scholar
  21. 21.
    J. Chen, Commun. Partial Differ. Equ. 20, 1602 (1995)CrossRefGoogle Scholar
  22. 22.
    M. Ding, J. Differ. Equ. 262, 6068 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    M. Kunik, Habilitation Thesis, Otto-von-Guericke University Magdeburg (2005)Google Scholar
  24. 24.
    V. Pant, Commu. Partial Differ. Equ. 21, 1609 (1996)CrossRefGoogle Scholar
  25. 25.
    J. Smoller, B. Temple, Commun. Math. Phys. 156, 67 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    M.A.E. Abdelrahman, M. Kunik, Math. Methods Appl. Sci. 38, 1247 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Ding, J. Kuang, Y. Zhang, J. Math. Anal. Appl. 448, 1228 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Qamar, M. Yousaf, S. Mudasser, Comput. Phys. Commun. 182, 992 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations