Quantum Markov processes: From attractor structure to explicit forms of asymptotic states

Asymptotic dynamics of quantum Markov processes
  • J. NovotnýEmail author
  • J. Maryška
  • I. Jex
Regular Article


Markov processes play an important role in physics and in particular in the theory of open systems. In this paper we study the asymptotic evolution of trace-nonincreasing homogeneous quantum Markov processes (both types, discrete quantum Markov chains and continuous quantum Markov dynamical semigroups) equipped with a subinvariant faithful state in the Schrödinger and the Heisenberg picture. We derive a fundamental theorem specifying the structure of the asymptotics and uncover a rich set of transformations between attractors of quantum Markov processes in both pictures. Moreover, we generalize the structure theorem derived earlier for quantum Markov chains to quantum Markov dynamical semigroups showing how the internal structure of generators of quantum Markov processes determines attractors in both pictures. Based on these results we provide two characterizations of all asymptotic and stationary states, both strongly reminding in form the well-known Gibbs states of statistical mechanics. We prove that the dynamics within the asymptotic space is of unitary type, i.e. quantum Markov processes preserve a certain scalar product of operators from the asymptotic space, but there is no corresponding unitary evolution on the original Hilbert space of pure states. Finally simple examples illustrating the derived theory are given.


  1. 1.
    H. Nurdin, N. Yamamoto, Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control (Springer International Publishing, 2017)Google Scholar
  2. 2.
    M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.O. Caldeira, An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation (Cambridge University Press, UK, 2014)Google Scholar
  4. 4.
    O. Henri-Rousseau, P. Blaise, Quantum Oscillators (Wiley, New Jersey, 2012)Google Scholar
  5. 5.
    N.H. March, G.G.N. Angilella, Exactly Solvable Models In Many-body Theory (World Scentific, Singapore, 2016)Google Scholar
  6. 6.
    F. Petrucione, H.P. Brenner, Theory of Open Quantum systems (Oxfor University Press, NY, 1992)Google Scholar
  7. 7.
    C. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Stochastic Methods with Applications to Quantum Optics (Springer, Heidelberg, 2004)Google Scholar
  8. 8.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    V. Gorini, A. Kossakowski, E.C.G. Sudershan, J. Math. Phys. 17, 821 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    S. Gudder, J. Math. Phys. 49, 072105 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin,1987)Google Scholar
  12. 12.
    E. Joos, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 2003)Google Scholar
  13. 13.
    H. Krauter et al., Phys. Rev. Lett. 107, 080503 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Lin et al., Nature 504, 415 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    F. Ticozzi, L. Viola, Quantum Inf. Comput. 14, 0265 (2014)MathSciNetGoogle Scholar
  16. 16.
    B. Kraus et al., Phys. Rev. A 78, 042307 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Kastoryano, F. Reiter, A.S. Sorensen, Phys. Rev. Lett 106, 090502 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Ying, N. Yu, Y. Feng, R. Duan, Sci. Comput. Program. 78, 1679 (2013)CrossRefGoogle Scholar
  19. 19.
    G. Shi, D. Dong, I.R. Petersen, K.H. Johansson, IEEE Trans. Autom. Control 61, 374 (2016)Google Scholar
  20. 20.
    F. Caruso et al., J. Chem. Phys. 131, 105106 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    P. Rebentrost et al., New J. Phys. 11, 033003 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    M. Stefaňák, J. Novotný, I. Jex, New J. Phys. 18, 023040 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    D.A. Lidar, K.B. Whaley, Decoherence-Free Subspaces and Subsystems, in Irreversible Quantum Dynamics, edited by F. Benatti, R. Floreanini, in Lecture Notes in Physics, Vol. 622 (Springer, Berlin, 2003)Google Scholar
  24. 24.
    R. Schrader, Perron-Frobenius theory for positive maps on trace ideals, in Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects, edited by Roberto Longo, Fields Institute Communication Series, Vol. 30 (American Mathematical Society, Providence, 2007)Google Scholar
  25. 25.
    F. Fagnola, R. Pellicer, Commun. Stoch. Anal. 3, 407 (2009)MathSciNetGoogle Scholar
  26. 26.
    B. Baumgartner, H. Narnhofer, Rev. Math. Phys. 24, 1250001 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Carbone, Y. Pautrat, Rep. Math. Phys. 77, 293 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Arias, A. Gheondea, S. Gudder, J. Math. Phys. 43, 5872 (2002)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    D.W. Kribs, Proc. Edinburgh Math. Soc. (Ser. 2) 46, 421 (2003)CrossRefGoogle Scholar
  30. 30.
    F. Frigerio, M. Verri, Math. Z. 180, 275 (1982)MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Fagnola, Rend. Circ. Mat. Palermo Ser. II, Suppl. 73, 35 (2004)Google Scholar
  32. 32.
    R.B. Kohout, H.K. Ng, D. Poulin, L. Viola, Phys. Rev. A 82, 062306 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    A. Gheondea, arxiv:1611.04742 (2016)Google Scholar
  34. 34.
    J. Novotný, G. Alber, I. Jex, J. Phys. A 45, 485301 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    V.V. Albert, B. Bradlyn, M. Fraas, L. Jiang, Phys. Rev. X 6, 041031 (2016)Google Scholar
  36. 36.
    V.V. Albert, L. Jiang, Phys. Rev. A 89, 022118 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Li, J. Math. Anal. Appl. 382, 172 (2011)MathSciNetCrossRefGoogle Scholar
  38. 38.
    R. Ballian, From Microphysics to Macrophysics, Vol. I (Springer-Verlag, Berlin, 1991)Google Scholar
  39. 39.
    C.M. Chandrashekar, T. Busch, Quantum Inf. Process. 13, 1313 (2014)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    I Yalçinkaya, Z. Gedik, J. Phys. A 50, 155101 (2017)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Jenčová, Rev. Math. Phys. 24, 1250016 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    A. Lesniewski, M.B. Ruskai, J. Math. Phys. 40, 5702 (1999)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    K. Löwner, Math. Z. 38, 177 (1934)MathSciNetCrossRefGoogle Scholar
  44. 44.
    R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)Google Scholar
  45. 45.
    D.W. Robinson, Commun. Math. Phys. 85, 129 (1982)ADSCrossRefGoogle Scholar
  46. 46.
    D. Burgarth, G. Chiribella, V. Giovannetti, P. Perinotti, K. Yuasa, New J. Phys. 15, 073045 (2013)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    R. Bhatia, Matrix Analysis (Springer-Verlag, New York, 1997)Google Scholar
  48. 48.
    R. Bhatia, Positive Definite Matrices (Princeton UP, Princeton and Oxford, 2007)Google Scholar
  49. 49.
    V. Paulsen, Completely Bounded Maps and Operator Algebras (Cambridge University Press, Cambridge, 2002)Google Scholar
  50. 50.
    M.W. Wolf, D. Perez-Garcia, arXiv:1005.4545 (2010)Google Scholar
  51. 51.
    J. Novotný, G. Alber, I. Jex, Cent. Eur. J. Phys. 8, 1001 (2009)Google Scholar
  52. 52.
    F. Ticozzi, M. Pavon, arXiv:0811.0929 (2009)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePraha 1 - Staré MěstoCzech Republic

Personalised recommendations