Advertisement

MHD mixed convection Poiseuille flow in a porous medium: New trends of Caputo time fractional derivatives in heat transfer problems

  • Ilyas KhanEmail author
  • Nehad Ali Shah
  • Niat Nigar
  • Yasir Mahsud
Regular Article
  • 80 Downloads
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation

Abstract.

This paper discusses new trends of fractional derivatives in heat transfer problems. More exactly, in this work magnetohydrodynamic (MHD) mixed convection Poiseuille flow of electrically conducting, an incompressible viscous fluid with memory, in a vertical channel filled with porous medium is studied under the influence of an oscillating pressure gradient. The vertical channel is taken in stationary state with non-uniform walls temperature. The problem is formulated in terms of fractional differential equations with Caputo time fractional derivatives. The closed forms of the non-dimensional temperature, velocity, Nusselt numbers and skin friction coefficients on the walls are determined by employing the Laplace transform method. The solutions are presented in terms of the time-fractional derivative of the Wright function, Robotnov and Hartley F -function and Lorenzo-Hartley R -function. Similar solutions for ordinary fluid, corresponding to the fractional parameter equal to one, are obtained as a particular case of the fractional problem. The influences of the fractional parameter \( \alpha\) , Péclet number Pe and Reynolds number Re on the heat and momentum transfer are studied. It is found that the heat transfer can be enhanced in the fluid with memory. Fluids described with a fractional model flow faster/slower than the ordinary fluid, depending on the Reynolds number/Péclet number.

References

  1. 1.
    Svetlana I. Natarov, Clinton P. Conrad, Geophys. J. Int. 190, 1297 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Yong-Li Chen, Ke-Qin Zhu, J. Non-Newton. Fluid Mech. 153, 1 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Ellahi, Commun. Nonlinear Sci. Numer. Simul. 14, 1377 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Devakar, D. Sreenivasu, B. Shankar, Alex. Eng. J. 53, 723 (2014)CrossRefGoogle Scholar
  5. 5.
    E.A. Ashmawy, Meccanica 47, 85 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    O.D. Makinde, P.Y. Mhone, Rom. J. Phys. 50, 931 (2005)Google Scholar
  7. 7.
    O.D. Makinde, E. Osalusi, Rom. J. Phys. 51, 319 (2006)Google Scholar
  8. 8.
    A. Mehmood, A. Ali, Rom. J. Phys. 52, 85 (2007)Google Scholar
  9. 9.
    A. Farhad, Ilyas Khan, Samiulhaq, Norzieha Mustapha, Sharidan Shafie, J. Phys. Soc. Jpn. 81, 064402 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    G. Aaiza, K. Ilyas, S. Sharedan, Nanoscale Res. Lett. 10, 490 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Aaiza Gul, Ilyas Khan, Sharidan Shafie, Asma Khalid, Arshad Khan, PLoS ONE 10, e0141213 (2015)CrossRefGoogle Scholar
  12. 12.
    J.A. Falade, Joel C. Ukaegbu, A.C. Egere, Samuel O. Adesanya, Alex. Eng. J. 56, 147 (2017)CrossRefGoogle Scholar
  13. 13.
    Sidra Aman, Neural Comput. Appl.,  https://doi.org/10.1007/s00521-016-2688-7 (2016)
  14. 14.
    L. Debnath, Int. J. Math. Math. Sci. 203, 3413 (2003)CrossRefGoogle Scholar
  15. 15.
    R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Nonlinear Dyn. 29, 129 (2002)CrossRefGoogle Scholar
  16. 16.
    W.C. Tan, F. Xian, L. Wei, China Sci. Bull. 47, 1226 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Qi, H. Jin, Nonlinear Anal. Real World Appl. 10, 2700 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Ali, S.A.A. Jan, Ilyas Khan., M. Gohar, N.A. Sheikh, Eur. Phys. J. Plus 131, 310 (2016)CrossRefGoogle Scholar
  19. 19.
    Ilyas Khan, Nehad Ali Shah, Dumitru Vieru, Eur. Phys. J. Plus 131, 181 (2016)CrossRefGoogle Scholar
  20. 20.
    N.A. Shah, I. Khan, Eur. Phys. J. C 76, 362 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    V. Kulish, J. Luis Lage, J. Fluids Eng. 124, 803 (2002)CrossRefGoogle Scholar
  22. 22.
    M.A. Imran, I. Khan, M. Ahmad, N.A. Shah, M. Nazar, J. Mol. Liq. 229, 67 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Stankovic, Publ. Inst. Math. 10, 113 (1970)Google Scholar
  24. 24.
    T.T. Hartley, C.F. Lorenzo, A solution to the fundamental linear fractional order differential equations, NASA/TP-1998-2086 93 (1998)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ilyas Khan
    • 1
    Email author
  • Nehad Ali Shah
    • 2
  • Niat Nigar
    • 2
  • Yasir Mahsud
    • 2
  1. 1.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Abdus-salam School of Mathematical SciencesGC UniversityLahorePakistan

Personalised recommendations