Advertisement

Thermodynamics of mono-layer quantum wires with spin-orbit interaction

  • D. Najafi
  • B. VaseghiEmail author
  • G. Rezaei
  • R. Khordad
Regular Article

Abstract.

In the current work the thermodynamic properties of a typical mono-layer quantum wire under the influence of an external static electric and a magnetic field are investigated. To this aim, first the complete energy spectrum of the system is calculated by solving the Schrödinger equation in the presence of the Rashba spin-orbit interaction. Second, the Tsallis formalism is applied to obtain entropy, internal energy and specific heat of the system. Because of the disorder increment with considering the spin-orbit interaction and its strengths, the results show that the spin-orbit interaction has considerable effects on the thermodynamics of the system. Also, the results propose the possibility to control the statistical and thermodynamical properties of typical systems by tuning the spin-orbit interaction strength via external gates.

References

  1. 1.
    K. Hashimoto, N. Iizuka, T. Kimura, Phys. Rev. D 91, 086003 (2015)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.E. Flatt, Nature 462, 419 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Yang-Le Wu, S. Das Sarma, Phys. Rev. B 96, 165301 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Song, S. Das Sarma, Phys. Rev. B 96, 115444 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    M. Breitkreiz, P.M.R. Brydon, Carsten Timm, Phys. Rev. B 94, 205103 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    H.M. Hurst, D.K. Efimkin, V. Galitski, Phys. Rev. B 93, 245111 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    S.S. Natu, Phys. Rev. A 92, 053623 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Das Sarma, E.H. Hwang, Phys. Rev. B 90, 035425 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Wolf, J. Lu, M.R. Stan, E. Chen, D.M. Tregger, IEEE 98, 2155 (2010)CrossRefGoogle Scholar
  10. 10.
    M.E. Flatte, IEEE Trans. Electron. Dev. 54, 907 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S. Ikeda, J. Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, H. Ohno, IEEE Trans. Electron. Dev. 54, 991 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    B. Berche, C. Chatelain, E. Medina, Eur. J. Phys. 31, 1267 (2010)CrossRefGoogle Scholar
  13. 13.
    E.I. Rashba, Physica E 20, 189 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    E.I. Rashba, Al.L. Efros, Phys. Rev. Lett. 91, 126405 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955)ADSCrossRefGoogle Scholar
  17. 17.
    E.P. Nakhmedov, O. Alekperov, Eur. Phys. J. B 85, 298 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P.D.C. King et al., Phys. Rev. Lett. 107, 096802 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    O.G. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer, Berlin, 2007)Google Scholar
  20. 20.
    B. Berche, C. Chatelain, E. Medina, Eur. J. Phys. 31, 1267 (2010)CrossRefGoogle Scholar
  21. 21.
    D. Liang, X.P.A. Gao, Nano Lett. 12, 3263 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett. 78, 1335 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    W. Ebeling, M.I. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequiblibrium System (World Scientific, Singapore, 2005)Google Scholar
  24. 24.
    T.C. Dorlas, Statistical Mechanics-Fundamentals and Model Solutions (Dover Publications Inc. USA, 2017)Google Scholar
  25. 25.
    C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    E.M.F. Curado, C. Tsallis, J. Phys. A 24, 69 (1991)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A.P. Lyubartsev, A.A. Martinovski, S.V. Shevkunov, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    F. Zhang, Y. Shi, H. Keung Tony Ng et al., Eur. Phys. J. Plus 131, 379 (2016)CrossRefGoogle Scholar
  30. 30.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, Berlin, 2009)Google Scholar
  31. 31.
    K.E. Daniels, C. Beck, E. Bodenschatz, Physica D 193, 208 (2004)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    E. Lutz, Phys. Rev. A 67, 051402 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    P. Douglas, S. Bergamini, F. Renzoni, Phys. Rev. Lett. 96, 110601 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    C. Beck, Phys. Rev. Lett. 98, 064502 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A. Pluchino, A. Rapisarda, C. Tsallis, EPL 80, 26002 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    L. Borland, Phys. Rev. Lett. 89, 098701 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    A. Upadhyaya, J.-P. Rieu, J.A. Glazier, Y. Sawada, Physica A 293, 549 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    L.L. Chen, C. Beck, Physica A 387, 3162 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    M.M. Wilde, Quantum Information Theory (Cambridge University Press, UK, 2013)Google Scholar
  40. 40.
    P. Calabrese, J. Cardy, B. Doyon, J. Phys. A 42, 500301 (2009)MathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Harrison, Quantum Wells, Wires and Dots (Wiley, 2005)Google Scholar
  42. 42.
    A. Tiutiunnyk, V. Akimov, V. Tulupenko, M.E. Mora-Ramos, E. Kasapoglu, A.L. Morales, C.A. Duque, Eur. Phys. J. B 89, 107 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    B. Vaseghi, A. Ghaffari, Physica E 81, 163 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    T. Chwiej, Physica E 94, 139 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    L. Wang, W. Lv, Z. Hao et al., Front. Optoelectron. 7, 293 (2014)CrossRefGoogle Scholar
  46. 46.
    T. Hyart, B. van Heck, I.C. Fulga, M. Burrello, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. B 88, 035121 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    A. Vartanian, A. Kirakosyan, K. Vardanyan, Superlattices Microstruct. 109, 655 (2017)CrossRefGoogle Scholar
  48. 48.
    I.A. Kokurin, Physica E 74, 264 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    S. Furthmeier, F. Dirnberger, M. Gmitra et al., Nat. Commun. 7, 12413 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    R. Khordad, Continuum Mech. Thermodyn. 28, 947 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of SciencesYasouj UniversityYasoujIran

Personalised recommendations