Advertisement

Markovian thermal evolution of entanglement and decoherence of GHZ state

  • Farkhondeh Abbasnezhad
  • Somayeh Mehrabankar
  • Davood AfsharEmail author
  • Mojtaba Jafarpour
Regular Article
  • 30 Downloads

Abstract.

The thermal evolution of decoherence and entanglement of an open quantum system consisting of three uncoupled oscillators is investigated using the Lindblad equation. We consider T and GHZ states as the initial states of the system and a bosonic bath in a thermal equilibrium state as the environment. Using the PPT criterion and the degree of purity, the dependence of the entanglement and decoherence of the system on the parameters of the environment (temperature, dissipation coefficient) and the initial state (noise, squeezing) is investigated. It is observed that the relaxation rate to entanglement sudden death (RRESD) is an increasing function of temperature, dissipation coefficient and noise, while it is a decreasing function of squeezing. In addition, it is observed that decoherence occurs sooner with increase of all the involved parameters. Moreover, by comparing T and GHZ states as initial states of the system, it is observed that the entanglement of the system with GHZ initial states can survive longer.

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information, 10th edition (Cambridge University Press, New York, 2000)Google Scholar
  2. 2.
    F. Petruccione, H.P. Breuer, The theory of open quantum systems, 1st edition (Oxford University Press, New York, 2002)Google Scholar
  3. 3.
    U. Weiss, Quantum dissipative systems, 3rd edition (Word Scientific, Singapore, 2008)Google Scholar
  4. 4.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    H.J. Kimble, D.F. Walls, J. Opt. Soc. Am. B 4, 1490 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    M. Reck, A. Zeilinger, Phys. Rev. Lett. 73, 58 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    H. Jeong, J. Lee, M.S. Kim, Phys. Rev. A 61, 052101 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    T. Hiroshima, Phys. Rev. A 63, 022305 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Prauzner-Bechcicki, J. Phys. A: Math. Gen. 37, L 173 (2004)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Serafini et al., Phys. Rev. A 69, 022318 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    X.Y. Chen, Phys. Rev. A 73, 022307 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    X. Liu, W. Wu, Acta Phys. Pol. A 126, 1121 (2014)CrossRefGoogle Scholar
  13. 13.
    K.L. Liu, H.S. Goan, Phys. Rev. A 76, 022312 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Isar, Phys. Scr. T 135, 014033 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A. Isar, Open. Syst. Inf. Dyn. 16, 205 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Isar, Phys. Scr. 82, 038116 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. Isar, J. Russ. Laser. Res. 31, 182 (2010)CrossRefGoogle Scholar
  18. 18.
    G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 73, 032345 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    M. Genkin, A. Eisfeld, J. Phys. B: At. Mol. Opt. Phys. 44, 035502 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Isar, Open Syst. Inf. Dyn. 20, 1340003 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Adesso, A. Serafini, F. Illuminati, New J. Phys. 9, 60 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S. Mehrabankar et al., J. Res. Many-body Syst. 7, 17 (2017)Google Scholar
  23. 23.
    S. Bravyi, A. Kitaev, Phys. Rev. A 71, 022316 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Adesso, F. Illuminati, Phys. Rev. Lett. 95, 150503 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    A.M. Lance et al., Phys. Rev. Lett. 92, 177903 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    J. Jing et al., Phys. Rev. Lett. 90, 167903 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    J. O’ Gorman, E.T. Campbell, Phys. Rev. A 95, 032338 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A. Smith et al., Phys. Rev. A 87, 030102(R) (2013)ADSCrossRefGoogle Scholar
  29. 29.
    E.T. Campbell, J. O’Gorman, Quantum Sci. Technol. 1, 015007 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    N. Cerf, G. Leuchs, E.S. Polzik, Quantum information with continuous variables of atoms and light (Imperial College Press, London, 2007)Google Scholar
  31. 31.
    T. Aoki et al., Phys. Rev. Lett. 91, 080404 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    A.S. Bradley et al., Phys. Rev. A 72, 053805 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    P. van Loock, S.L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    H. Yonezawa, T. Aoki, A. Furusawa, Nature 431, 430 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    S.L. Braunstein, A.K. Pati, Quantum information theory with continuous variables, 2nd edition (Kluwer, Dordrecht, 2002)Google Scholar
  36. 36.
    S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    G. Rigolin, M.C. de Oliveira, Ann. Phys. 323, 2172 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    M. Bourennane, A. Karlsson, G. Bjork, Phys. Rev. A 64, 012306 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    R. Simon, N. Mukunda, E.C.G. Sudarshan, Phys. Rev. A 36, 3868 (1987)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Williamson, Am. J. Math. 58, 141 (1936)CrossRefGoogle Scholar
  41. 41.
    H. Huang, G.S. Agarwal, Phys. Rev. A 49, 52 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    A. Serafini, F. Illuminati, S.De. Siena, J. Phys. B: At. Mol. Opt. Phys. 37, L 21 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)ADSCrossRefGoogle Scholar
  44. 44.
    G. Lindblad, Rep. Math. Phys. 10, 393 (1976)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Y. Hamdouni, J. Phys. G: Nucl. Part. Phys. 37, 125106 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    A. Sandulescu, H. Scutaru, W. Scheid, J. Phys. A: Math. Gen. 20, 2121 (1987)ADSCrossRefGoogle Scholar
  47. 47.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    H.D. Zeh, Found. Phys. 1, 69 (1970)ADSCrossRefGoogle Scholar
  50. 50.
    D. Afshar, S. Mehrabankar, F. Abbasnezhad, Eur. Phys. J. D 70, 64 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    F. Abbasnezhad et al., Quntum Inf. Process. 16, 1 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    W.H. Zurek, Phys. Rev. D 24, 1516 (1981)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    W.H. Zurek, Phys. Rev. D 26, 1862 (1982)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentShahid Chamran University of AhvazAhvazIran
  2. 2.Center for Research on Laser and PlasmaShahid Chamran University of AhvazAhvazIran

Personalised recommendations