Advertisement

Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative

  • N. A. Asif
  • Z. HammouchEmail author
  • M. B. Riaz
  • H. Bulut
Regular Article
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation

Abstract.

Couette flows of an incompressible Maxwell fluid with non-integer order derivative without singular kernel due to the motion of a bottom flat plate are analyzed under the slip boundary condition. An analytical transform approach is used to obtain the exact expressions for both velocity field and shear stress. Three particular cases from the general results with slip at the wall are obtained. These solutions, which are organized in simple forms in terms of exponential and trigonometric functions, can be conveniently engaged to obtain known solutions from the literature. The control of the new non-integer order derivative on the velocity and shear stress of the fluid is analyzed for some flows with practical applications. The non-integer order derivative with non-singular kernel is more appropriate for handling mathematical calculations of the obtained solutions.

References

  1. 1.
    M. Takashima, Phys. Lett. A 33, 371 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Maxwell, Philos. Trans. R. Soc. London A 157, 49 (1867)CrossRefGoogle Scholar
  3. 3.
    C.H.R. Friedrich, Rheol. Acta 30, 151 (1991)CrossRefGoogle Scholar
  4. 4.
    F. Olsson, J. Ystrom, J. Non-Newtonian Fluid Mech. 48, 125 (1993)CrossRefGoogle Scholar
  5. 5.
    J.J. Choi, Z. Rusak, J.A. Tichy, J. Non-Newtonian Fluid Mech. 85, 165 (1999)CrossRefGoogle Scholar
  6. 6.
    C. Fetecau, C. Fetecau, Int. J. Non-Linear Mech. 38, 423 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    C. Fetecau, C. Fetecau, Int. J. Non-Linear Mech. 38, 603 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    P.M. Jordan, A. Puri, G. Boros, Int. J. Non-Linear Mech. 39, 1371 (2004)CrossRefGoogle Scholar
  9. 9.
    J. Zierep, C. Fetecau, Int. J. Eng. Sci. 45, 617 (2007)CrossRefGoogle Scholar
  10. 10.
    C. Fetecau, M. Jamil, C. Fetecau, I. Siddique, Int. J. Non-Linear Mech. 44, 1085 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    F. Salah, Z.A. Aziz, D.L.C. Ching, Results Phys. 1, 9 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M. Jamil, C. Fetecau, N.A. Khan, A. Mahmood, Int. J. Chem. Reactor Eng. 9, 20 (2011)Google Scholar
  13. 13.
    D. Vieru, A. Rauf, Can. J. Phys. 89, 1061 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D. Vieru, A.A. Zafar, Appl. Math. Inf. Sci. 7, 209 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    I. Khan, F. Ali, U.S. Haq, S. Shafie, Z. Naturforsch. A 68a, 635 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    C.L.M.H. Navier, Mem. Acad. Sci. 6, 389 (1827)Google Scholar
  17. 17.
    I.J. Rao, K. Rajagopal, Acta Mech. 135, 113 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Mooney, J. Rheol. 2, 210 (1931)ADSCrossRefGoogle Scholar
  19. 19.
    A.R.A. Khaled, K. Vafai, Int. J. Non-Lin. Mech. 39, 795 (2004)CrossRefGoogle Scholar
  20. 20.
    D. Vieru, A. Rauf, Can. J. Phys. 89, 1061 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    D. Vieru, A.A. Zafar, Appl. Math. Inf. Sci. 7, 209 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    L. Zhenga, Y. Liu, X. Zhang, Non-Lin. Anal.: Real World Appl. 12, 513 (2012)Google Scholar
  23. 23.
    R. Ellahi, T. Hayat, F.M. Mahomed, S. Asghar, Non-Lin. Anal.: Real World Appl. 11, 139 (2010)Google Scholar
  24. 24.
    T. Hayat, M. Khan, M. Ayub, J. Comput. Appl. Math. 202, 402 (2007)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Heibig, L.I. Palade, J. Math. Phys. 49, 043101 (2008)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    N. Makris, G.F. Dargush, M.C. Constantinou, J. Eng. Mech. 119, 1663 (1993)CrossRefGoogle Scholar
  27. 27.
    S. Kumar, Alex. Eng. J. 52, 813 (2013)CrossRefGoogle Scholar
  28. 28.
    Francesco Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World Scientific, 2010)Google Scholar
  29. 29.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications (Academic Press, New York, 2009)Google Scholar
  30. 30.
    M. Caputo, M. Fabrizio, J. Comput. Phys. 293, 400 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    L. Debnath, D. Bhatta, Integral Transforms and Their Applications (Chapman and Hall/CRC Press, Boca-Raton, 2007)Google Scholar
  32. 32.
    I. Siddique, D. Vieru, Int. Rev. Chem. Eng. 3, 822 (2011)Google Scholar
  33. 33.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  34. 34.
    A. Atangana, Appl. Math. Comput. 1, 948 (2016)Google Scholar
  35. 35.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)MathSciNetGoogle Scholar
  37. 37.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Asif
    • 1
  • Z. Hammouch
    • 2
    Email author
  • M. B. Riaz
    • 1
  • H. Bulut
    • 3
  1. 1.School of ScienceUniversity of Management and TechnologyLahorePakistan
  2. 2.E3MI, Département de MathématiquesFST Errachidia Université Moulay IsmailErrachidiaMorocco
  3. 3.Department of MathematicsFirat UniversityElazığTurkey

Personalised recommendations