Parameter estimation of a complex chaotic system with unknown initial values

  • Yuexi Peng
  • Kehui SunEmail author
  • Shaobo He
  • Xi Yang
Regular Article


The parameter estimation of a chaotic system is an important issue in nonlinear science, and it has gained increased attention in recent years. However, the existing estimation methods must be based on the initial values known in the original system. Yet the initial values cannot be obtained in many cases, which is not conducive to the reconstruction and control of chaotic systems. In addition, these methods are unable to provide enough precision for high-dimensional complex chaotic systems. In this paper, a parameter estimation method with unknown initial values is developed, and a new algorithm called the chaos behaved particle swarm optimization algorithm is proposed. Three highlights, namely chaos initialization, special inertia weight and chaos search, are introduced into the algorithm. The simulation experiments are carried out for three complex chaotic systems, including two typical fractional-order hyperchaotic systems and a fractional-order multi-directional multi-scroll chaotic attractor system. Based on the results, the method proposed in this paper demonstrates more effectiveness and advantages than the other four existing algorithms.


  1. 1.
    S.T. Kingni, S. Jafari, H. Simo, P. Woafo, Eur. Phys. J. Plus 129, 76 (2014)CrossRefGoogle Scholar
  2. 2.
    Z. Peng, D. Wang, J. Wang, IEEE T. Neural Network 28, 2156 (2017)Google Scholar
  3. 3.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Z.P. Wang, H.N. Wu, Nonlinear Dyn. 78, 729 (2014)CrossRefGoogle Scholar
  5. 5.
    S.K. Agrawal, M. Srivastava, S. Das, Chaos, Solitons Fractals 45, 737 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    V. Vembarasan, P. Balasubramaniam, Nonlinear Dyn. 74, 31 (2013)CrossRefGoogle Scholar
  7. 7.
    O.M. Kwon, H.P. Ju, S.M. Lee, Nonlinear Dyn. 63, 239 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Xue, N. Jiang, Y. Lü, K. Qiu, IEEE Trans. Commun. 65, 312 (2017)Google Scholar
  9. 9.
    Z.H. Chen, X.H. Yuan, Y.B. Yuan, IEEE Trans. Circ. I 63, 1464 (2016)Google Scholar
  10. 10.
    V. Siderskiy, V. Kapila, Int. J. Bifurc. Chaos 24, 1430032 (2014)CrossRefGoogle Scholar
  11. 11.
    R. Cui, Y. Wei, Y.Q. Chen, S.S. Cheng, Y. Wang, Nonlinear Dyn. 89, 453 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Shourgashti, H. Keshvari, S. Panahi, Complexity 2-3, 1 (2017)CrossRefGoogle Scholar
  13. 13.
    D. Dai, X.K. Ma, F.C. Li, Y. You, Acta Phys. Sin. 51, 2495 (2002)Google Scholar
  14. 14.
    Q. He, L. Wang, B. Liu, Chaos, Solitons Fractals 34, 654 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Lazzús, M. Rivera, C.H. López-Caraballo, Phys. Lett. A 380, 1164 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    H.L. Zhang, L.L. Song, Acta Phys. Sin. 62, 190508 (2013)Google Scholar
  17. 17.
    Y. Huang, Y.F. Liu, Z.M. Peng, Y.J. Ding, Acta Phys. Sin. 3, 030505 (2015)Google Scholar
  18. 18.
    S. Xu, Y. Wang, X. Liu, Neural Comput. Appl. 2, 1 (2017)Google Scholar
  19. 19.
    H.J. Zhang, B.Z. Li, J. Zhang, Y.H. Qin, X.Y. Feng, B. Liu, Soft Comput. 20, 4965 (2016)CrossRefGoogle Scholar
  20. 20.
    C.B. Xu, R.H. Yang, Mod. Phys. Lett. B 31, 1750346 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Tang, X. Zhang, C. Hua, L.X. Li, Y.X. Yang, Phys. Lett. A 376, 457 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    X. Li, M. Yin, Nonlinear Dyn. 77, 61 (2014)CrossRefGoogle Scholar
  23. 23.
    A.H. Gandomi, A. Alavi, Commun. Nonlinear Sci. 17, 2110 (2012)CrossRefGoogle Scholar
  24. 24.
    L.M. Zhang, K.H. Sun, S.B. He, H.H. Wang, Y.X. Xu, Eur. Phys. J. Plus 132, 31 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    V.C. Mariani, A.R. Duck, F.A. Guerra, L.S. Coelho, R.C. Rao, Appl. Therm. Eng. 42, 119 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Chen, F.Y. Zhou, A.L. Liu, Knowl.-Based Syst. 139, 23 (2018)CrossRefGoogle Scholar
  27. 27.
    G.G. Wang, L.H. Guo, A.H. Gandomi, G.S. Hao, H.Q. Wang, Inf. Sci. 274, 17 (2014)CrossRefGoogle Scholar
  28. 28.
    P.F. Niu, K. Chen, Y.P. Ma, X. Li, A.L. Liu, G.Q. Li, Knowl.-Based Syst. 118, 80 (2017)CrossRefGoogle Scholar
  29. 29.
    O.E. Turgut, M.S. Turgut, M.T. Coban, Comput. Math. Appl. 68, 508 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Rim, S.H. Piao, L. Guo, U. Pak, Soft Comput. 22, 621 (2018)CrossRefGoogle Scholar
  31. 31.
    M.R. Bonyadi, Z. Michalewicz, Evol. Comput. 25, 1 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Shi, R. Eberhart, A modified particle swarm optimizer, in Proceedings of the IEEE International Conference on Evolutionary Computation (Anchorage, USA, 1998) pp. 69--73Google Scholar
  33. 33.
    F. Liu, H.B. Duan, Y.M. Deng, Optik 123, 1955 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    R. Poli, J. Kennedy, T. Blackwell, Swarm Intell. 1, 33 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Adeli, A. Broumandnia, Appl. Intell. 48, 1609 (2018)CrossRefGoogle Scholar
  36. 36.
    M.Y. Cheng, K.Y. Huang, H.M. Chen, Optim. Lett. 219, 3091 (2012)Google Scholar
  37. 37.
    L. Zhou, Y. Chen, K. Guo, F. Jia, IEEE Trans. Power Electr. 26, 1038 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    F.Q. Zhao, Y. Liu, Z.S. Shao, X. Jiang, C. Zhang, J.B. Wang, Int. J. Comput. Integr. Manufact. 29, 962 (2015)CrossRefGoogle Scholar
  39. 39.
    S.B. He, K.H. Sun, H.H. Wang, Math. Methods Appl. Sci. 39, 2965 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Y.X. Li, K.S. Tang, G.R. Chen, Int. J. Bifurc. Chaos 15, 3367 (2005)CrossRefGoogle Scholar
  41. 41.
    W.H. Deng, J.H. Lü, Chaos 16, 043120 (2006)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    X.B. Meng, X.Z. Gao, L.H. Lu, L. Yu, H.Z. Zhang, J. Exp. Theor. Artif. Intell. 28, 673 (2016)CrossRefGoogle Scholar
  43. 43.
    S.B. He, K.H. Sun, H.H. Wang, Entropy 17, 8299 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and ElectronicsCentral South UniversityChangshaChina
  2. 2.College of Information Science and EngineeringJishou UniversityJishouChina

Personalised recommendations