Advertisement

Mössbauer experiments in a rotating system, Doppler effect and the influence of acceleration

  • Alexander Kholmetskii
  • Tolga Yarman
  • Ozan Yarman
  • Metin Arik
Regular Article
  • 19 Downloads

Abstract.

We address a recent measurement carried out by Friedman et al. (J. Synchrotron Rad. 24, 661 (2017)) that was contingent upon the Mössbauer effect arising from the application of resonant synchrotron radiation on an orbiting resonant absorber, where the authors claim to have detected the influence of the centrifugal acceleration of the absorber on the measured shift of the resonant line. We show that a later attempt to explain the outcome of this experiment via the time-dependent Doppler effect in an accelerated frame (E. Benedetto and A. Feoli, Eur. Phys. J. Plus 133, 53 (2018)) is based on a misinterpretation of the Mössbauer effect and should thenceforth be rejected. We further show that the revealed dependence of the energy shift of the resonant line on the centrifugal acceleration of the resonant absorber could happen solely due to instrumental factors. In this regard, a realistic way to analyze the origin of the extra energy shift between emission and absorption lines in a rotating system is proposed.

References

  1. 1.
    A.L. Kholmetskii, T. Yarman, O.V. Missevitch, Phys. Scr. 77, 035302 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Kholmetskii, T. Yarman, O.V. Missevitch, B.I. Rogozev, Phys. Scr. 79, 065007 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    A.L. Kholmetskii, T. Yarman, O.V. Missevitch, Int. J. Phys. Sci. 6, 84 (2011)Google Scholar
  4. 4.
    T. Yarman, A.L. Kholmetskii, M. Arik, B. Akkus, Y. Öktem, L.A. Susam, O.V. Missevitch, Can. J. Phys. 94, 780 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Ch. Corda, Ann. Phys. 355, 360 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ch. Corda, Ann. Phys. 368, 258 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A.L. Kholmetskii, T. Yarman, M. Arik, Ann. Phys. 363, 556 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Kholmetskii, T. Yarman, O. Yarman, M. Arik, Ann. Phys. 374, 247 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    T. Yarman, A.L. Kholmetskii, Eur. Phys. J. Plus 128, 8 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Yarman, A.L. Kholmetskii, M. Arik, O. Yarman, Can. J. Phys. 94, 271 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    M. Arik, T. Yarman, A.L. Kholmetskii, O. Yarman, Can. J. Phys. 94, 616 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    T. Yarman, A.L. Kholmetskii, M. Arik, O. Yarman, Can. J. Phys. 94, 558 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    T. Yarman, A.L. Kholmetskii, M. Arik, Eur. Phys. J. Plus 130, 191 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Friedman, Yu. Gofman, Phys. Scr. 82, 015004 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Friedman, Ann. Phys. 523, 408 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Kündig, Phys. Rev. 129, 2371 (1963)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Friedman, I. Nowik, I. Felner et al., EPL 114, 50010 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Friedman, I. Nowik, I. Felner et al., J. Synchrotron Rad. 24, 661 (2017)CrossRefGoogle Scholar
  19. 19.
    W. Potzel, Hyperfine Interact. 237, 38 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    E. Benedetto, A. Feoli, Eur. Phys. J. Plus 133, 53 (2018)CrossRefGoogle Scholar
  21. 21.
    V.I. Goldanskii, R. Herber (Editors), Chemical Applications of the Mössbauer effect (Academic Press, New York and London, 1968)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Kholmetskii
    • 1
  • Tolga Yarman
    • 2
  • Ozan Yarman
    • 3
  • Metin Arik
    • 4
  1. 1.Belarus State UniversityMinskBelarus
  2. 2.Okan UniversityIstanbulTurkey
  3. 3.Istanbul UniversityIstanbulTurkey
  4. 4.Bogazici UniversityIstanbulTurkey

Personalised recommendations