Advertisement

Einstein static universe in the Rastall theory of gravity

Regular Article
  • 12 Downloads

Abstract.

We investigate stability of the Einstein static solution against homogeneous scalar, vector and tensor perturbations in the context of the Rastall theory of gravity. We show that this solution in the presence of perfect fluid and vacuum energy originating from conformally invariant fields is stable. Using the fix point method and taking linear homogeneous perturbations, we find that the scale factor of the Einstein static universe for closed deformed isotropic and homogeneous FLRW universe depends on the coupling parameter \( \lambda\) between the energy-momentum tensor and the gradient of the Ricci scalar. Thus, in the present model and in the presence of vacuum energy, our universe can stay at the Einstein static state past-eternally, which means that the big bang singularity may be resolved successfully in the context of the Einstein static universe in the Rastall theory.

References

  1. 1.
    P. Rastall, Phys. Rev. D 6, 3357 (1972)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Rastall, Can. J. Phys. 54, 66 (1976)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Vladimir Majernik, Lukas Richterek, arXiv:gr-qc/0610070Google Scholar
  4. 4.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)Google Scholar
  5. 5.
    T. Koivisto, Class. Quantum Grav. 23, 4289 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    O. Minazzoli, Phys. Rev. D 88, 027506 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Harko, F.S. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Harko, F.S. Lobo, Galaxies 2, 410 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Parker, Phys. Rev. D 3, 346 (1971)ADSCrossRefGoogle Scholar
  11. 11.
    L. Parker, Phys. Rev. D 3, 2546 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    L.H. Ford, Phys. Rev. D 35, 2955 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Phys. Rev. D 85, 084008 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Pereira, C.H.G. Bessa, J.A.S. Lima, Phys. Lett. B 690, 103 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S. Calogero, J. Cosmol. Astropart. Phys. 11, 016 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S. Calogero and H. Velten, J. Cosmol. Astropart. Phys. 11, 025 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    H. Velten, S. Calogero, arXiv:1407.4306Google Scholar
  18. 18.
    E.R. Bezerra de Mello, J.C. Fabris, B. Hartmann, Class. Quantum Grav. 32, 085009 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    G.F.R. Ellis, R. Maartens, Class. Quantum Grav. 21, 223 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    G.F.R. Ellis, J. Murugan, C.G. Tsagas, Class. Quantum Grav. 21, 233 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S. Carneiro, R. Tavakol, Phys. Rev. D 80, 043528 (2009) arXiv:0907.4795ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    C.G. Boehmer, Class. Quantum Grav. 21, 1119 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Mulryne, R. Tavakol, J.E. Lidsey, G.F.R. Ellis, Phys. Rev. D 71, 123512 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    L. Parisi, M. Bruni, R. Maartens, K. Vandersloot, Class. Quantum Grav. 24, 6243 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    P. Wu, H. Yu, J. Cosmol. Astropart. Phys. 05, 007 (2009) arXiv:0905.3116ADSCrossRefGoogle Scholar
  26. 26.
    J.E. Lidsey, D.J. Mulryne, Phys. Rev. D 73, 083508 (2006)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    C.G. Boehmer, L. Hollenstein, F.S.N. Lobo, Phys. Rev. D 76, 084005 (2007)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    N. Goheer, R. Goswami, P.K.S. Dunsby, Class. Quantum Grav. 26, 105003 (2009) arXiv:0809.5247ADSCrossRefGoogle Scholar
  29. 29.
    S. del Campo, R. Herrera, P. Labrana, JCAP 0711, 030 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    R. Goswami, N. Goheer, P.K.S. Dunsby, Phys. Rev. D 78, 044011 (2008)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    U. Debnath, Class. Quantum Grav. 25, 205019 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    B.C. Paul, S. Ghose, arXiv:0809.4131Google Scholar
  33. 33.
    S.S. Seahra, C.G. Bohmer, Phys. Rev. D 79, 064009 (2009)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    C.G. Boehmer, F.S.N. Lobo, Phys. Rev. D 79, 067504 (2009) arXiv:0902.2982ADSCrossRefGoogle Scholar
  35. 35.
    J.D. Barrow, G. Ellis, R. Maartens, C. Tsagas, Class. Quantum Grav. 20, L155 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    J.D. Barrow, C.G. Tsagas, Class. Quantum Grav. 26, 195003 (2009) arXiv:0904.1340ADSCrossRefGoogle Scholar
  37. 37.
    T. Clifton, J.D. Barrow, Phys. Rev. D 72, 123003 (2005)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    C.G. Boehmer, L. Hollenstein, F.S.N. Lobo, S.S. Seahra, arXiv:1001.1266Google Scholar
  39. 39.
    C.G. Boehmer, F.S.N. Lobo, Nicola Tamanini, Phys. Rev. D 88, 104019 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    C.G. Boehmer, F.S.N. Lobo, Eur. Phys. J. C 70, 1111 (2010) arXiv:0909.3986ADSCrossRefGoogle Scholar
  41. 41.
    P. Wu, H. Yu, Phys. Rev. D 81, 103522 (2010) arXiv:0909.2821ADSCrossRefGoogle Scholar
  42. 42.
    A. Odrzywolek, Phys. Rev. D 80, 103515 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    J.-T. Li, C.-C. Lee, C.-Q. Geng, Eur. Phys. J. C 73, 2315 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    L. Parisi, N. Radicella, G. Vilasi, Phys. Rev. D 86, 024035 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    M. Mousavi, F. Darabi, Nucl. Phys. B 919, 523 (2017) arXiv:1607.04377ADSCrossRefGoogle Scholar
  46. 46.
    A.M. Oliveira, H.E.S. Velten, J.C. Fabris, L. Casarini, Phys. Rev. D 92, 044020 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    C.E.M. Batista, J.C. Fabris, O.F. Piattella, A.M. Velasquez-Toribio, Eur. Phys. J. C 73, 2425 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    J.C. Fabris, O.F. Piattella, D.C. Rodrigues, M.H. Daouda, AIP Conf. Proc. 1647, 50 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    M. Capone, V.F. Cardone, M.L. Ruggiero, J. Phys. Conf. Ser. 222, 012012 (2010)CrossRefGoogle Scholar
  50. 50.
    J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012)CrossRefGoogle Scholar
  51. 51.
    J.P. Campos, J.C. Fabris, R. Perez, O.F. Piattella, H. Velten, Eur. Phys. J. C 73, 2357 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    J.C. Fabris, M.H. Daouda, O.F. Piattella, Phys. Lett. B 711, 232 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    J.C. Fabris, arXiv:1208.4649v1Google Scholar
  54. 54.
    H. Moradpour, Phys. Lett. B 757, 187 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    A.S. Al-Rawaf, M.O. Taha, Phys. Lett. B 366, 69 (1996)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    A.S. Al-Rawaf, M.O. Taha, Gen. Relativ. Gravit. 28, 935 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    F.F. Yuan, P. Huang, Class. Quantum Grav. 34, 077001 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    John. D. Barrow, G.F.R. Ellis, R. Maartens, C.G. Tsagas, Class. Quantum Grav. 20, 155 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    P.K.S. Dunsby, B.A. Basset, G.F.R. Ellis, Class. Quantum Grav. 14, 1215 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    A.D. Challinor, Class. Quantum Grav. 17, 871 (2000)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    R. Maartens, C.G. Tsagas, C. Ungarelli, Phys. Rev. D 63, 123507 (2001)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaraghaIran

Personalised recommendations