Advertisement

Novel connection between lump-like structures and quantum mechanics

  • D. Bazeia
  • L. Losano
  • Gonzalo J. Olmo
Regular Article

Abstract.

This work deals with lump-like structures in models described by a single real scalar field in two-dimensional spacetime. We start with a model that supports lump-like configurations and use the deformation procedure to construct scalar field theories that support both lumps and kinks, with the corresponding stability investigation giving rise to new physical systems. Very interestingly, we find models that support stable topological solutions, with the stability potential being able to support a tower of non-negative bound states, generating distinct families of potentials of current interest to quantum mechanics. We also describe models where the lump-like solutions give rise to stability potentials that have the shape of a double well.

References

  1. 1.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 1994)Google Scholar
  2. 2.
    T. Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, 2006)Google Scholar
  3. 3.
    M. Bordag, A. Yurov, Phys. Rev. D 67, 025003 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    T. Vachaspati, Phys. Rev. D 69, 043510 (2004)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A.T. Avelar, D. Bazeia, L. Losano, R. Menezes, Eur. Phys. J. C 55, 133 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    A.T. Avelar, D. Bazeia, W. Cardoso, L. Losano, Phys. Lett. A 374, 222 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    A. Khare, I.C. Christov, A. Saxena, Phys. Rev. E 90, 023208 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)ADSCrossRefGoogle Scholar
  9. 9.
    F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, 1996)Google Scholar
  11. 11.
    F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, 2001)Google Scholar
  12. 12.
    D. Bazeia, F.S. Bemfica, Mod. Phys. Lett. A 32, 1750073 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    D. Bazeia, F.S. Bemfica, Phys. Rev. D 95, 085008 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    D. Bazeia, L. Losano, EPL 121, 10006 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Frieman, G.B. Gelmini, M. Gleiser, E.W. Kolb, Phys. Rev. Lett. 60, 2101 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    A.L. MacPherson, B.A. Campbell, Phys. Lett. B 347, 205 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    S. Coleman, Nucl. Phys. B 262, 263 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    G. Dvali, A. Kusenko, M. Shaposhnikov, Phys. Lett. B 417, 99 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    A. Kusenko, M. Shaposhnikov, Phys. Lett. B 418, 46 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    T. Matsuda, Phys. Rev. D 68, 127 (2003)Google Scholar
  21. 21.
    D. Bazeia, M.A. Marques, R. Menezes, Eur. Phys. J. C 76, 241 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    R.L. Davis, E.P.S. Shellard, Nucl. Phys. B 323, 209 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    J. Garaud, E. Radu, M.S. Volkov, Phys. Rev. Lett. 111, 171602 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M. Gleiser, Phys. Lett. B 600, 126 (2004)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Gleiser, D. Sicilia, Phys. Rev. Lett. 101, 011602 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    S. Antusch, F. Cefalà, S. Orani, Phys. Rev. Lett. 118, 011303 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic, 1995)Google Scholar
  28. 28.
    H.A. Haus, W.S. Wong, Rev. Mod. Phys. 68, 423 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Y.S. Kivshar, B. Luther-Davies, Phys. Rep. 298, 81 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    M. Razavy, Quantum Theory of Tunneling (World Scientific, 2013)Google Scholar
  31. 31.
    A. Sen, J. High Energy Phys. 08, 012 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    A. Sen, Int. J. Mod. Phys. A 14, 4061 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    J.A. Minaham, B. Zwiebach, J. High Energy Phys. 09, 029 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    D.P. Jaktar, R. Vathsan, J. High Energy Phys. 06, 039 (2001)ADSGoogle Scholar
  35. 35.
    M. Schnabl, Adv. Theor. Math. Phys. 10, 433 (2006)MathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Erler, M. Schnabl, J. High Energy Phys. 10, 066 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    L. Bonora, D.D. Tolla, Eur. Phys. J. C 76, 203 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    G. ’t Hooft, Class. Quantum Grav. 16, 3263 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    C.R. Galley, Phys. Rev. Lett. 110, 174301 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    D. Bazeia, L. Losano, J.M.C. Malbouisson, Phys. Rev. D 66, 101701(R) (2002)ADSCrossRefGoogle Scholar
  41. 41.
    B. Zwiebach, JHEP 09, 028 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    I. Cho, A. Vilenkin, Phys. Rev. D 59, 021701(R) (1999)ADSCrossRefGoogle Scholar
  43. 43.
    D. Bazeia, Phys. Rev. D 60, 067705 (1999)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    E. Babichev, Phys. Rev. D 74, 085004 (2006)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    D. Bazeia, L. Losano, R. Menezes, J.C.R.E. Oliveira, Eur. Phys. J. C 51, 953 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    D. Bazeia, E. da Hora, H.P. Oliveira, Phys. Rev. D 81, 125016 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953)Google Scholar
  48. 48.
    K. Banerjee, S.P. Bhatnagar, Phys. Rev. D 18, 4767 (1978)ADSCrossRefGoogle Scholar
  49. 49.
    M.F. Manning, J. Chem. Phys. 3, 136 (1935)ADSCrossRefGoogle Scholar
  50. 50.
    T.D. Davis, R.E. Christoffersen, Chem. Phys. Lett. 20, 317 (1973)ADSCrossRefGoogle Scholar
  51. 51.
    W.S. Benédict, E.K. Plyer, Can. J. Phys. 35, 1235 (1957)ADSCrossRefGoogle Scholar
  52. 52.
    D. Bazeia, E. Belendryasova, V.A. Gani, Eur. Phys. J. C 78, 340 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    F.C. Simas, A.R. Gomes, K.Z. Nobrega, J.C.R.E. Oliveira, J. High Energy Phys. 09, 104 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSICUniversidad de ValenciaValenciaSpain

Personalised recommendations