Advertisement

A new stochastic computing paradigm for nonlinear Painlevé II systems in applications of random matrix theory

  • Muhammad Asif Zahoor Raja
  • Zahoor Shah
  • Muhammad Anwaar Manzar
  • Iftikhar Ahmad
  • Muhammad Awais
  • Dumitru Baleanu
Regular Article
  • 15 Downloads

Abstract.

The aim of the present work is to investigate the stochastic numerical solutions of nonlinear Painlevé II systems arising from studies of two-dimensional Yang-Mills theory, growth processes through fluctuation formulas in statistical physics, soft-edge random matrix distributions using the strength of bio-inspired heuristics through artificial neural networks (ANNs), genetic algorithm (GA)-based evolutionary computations and interior-point techniques (IPTs). A new mathematical modelling of the system is formulated through ANNs by defining an error function that exactly satisfies the initial conditions. The weights of ANN models optimized through a memetic computing approach that is based on a global search with GAs, and IPTs are used for an efficient local search. The designed scheme is substantiated through comparative analysis with a fully explicit Range-Kutta numerical procedure on nonlinear Painlevé II systems by taking different magnitudes of forcing factors. The accuracy and convergence of the proposed scheme are validated through statistics performed on large numbers of simulations.

References

  1. 1.
    P. Painlevé, Acta Math. 25, 1 (1902)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.P. Bassom, P.A. Clarkson, A.C. Hicks, IMA J. Appl. Math. 50, 139 (1993)CrossRefGoogle Scholar
  3. 3.
    K.M. Tamizhmani, A. Ramani, T. Tamizhmani, B. Grammaticos, J. Comput. Appl. Math. 160, 307 (2003)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Ramani, R. Willox, B. Grammaticos, A.S. Cartea, J. Satsuma, Physica A 347, 1 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Andriopoulos, P.G.J. Leach, J. Math. Anal. Appl. 328, 625 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Fornberg, J.A.C. Weiderman, J. Comput. Phys. 230, 5957 (2011)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A.G. Choudhury, P. Guha, N.A. Kudryashov, Appl. Math. Comput. 218, 6612 (2012)MathSciNetGoogle Scholar
  8. 8.
    X. Lou, H. Chen, Phys. Proc. 25, 2058 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Irfan, J. Geom. Phys. 62, 1575 (2012)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Mahmood, J. Geom. Phys. 95, 127 (2015)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G.Q. Xu, S.F. Deng, Eur. Phys. J. Plus 131, 385 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Fornberg, J.A.C. Weideman, Found. Comput. Math. 14, 985 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    P.A. Clarkson, Stud. Appl. Math. 137, 93 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.G. Clerc, J.D. Dávila, M. Kowalczyk, P. Smyrnelis, E. Vidal-Henriquez, Calc. Variat. Partial Differ. Equ. 56, 93 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Huang, S.X. Xu, L. Zhang, Construct. Approxim. 43, 463 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Schiappa, R. Vaz, Commun. Math. Phys. 330, 655 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    C. Rogers, P.A. Clarkson, J. Nonl. Math. Phys. 25, 247 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Mall, S. Chakraverty, Appl. Soft Comput. 43, 347 (2016)CrossRefGoogle Scholar
  19. 19.
    R.G. Peyvandi, S.I. Rad, Eur. Phys. J. Plus 132, 511 (2017)CrossRefGoogle Scholar
  20. 20.
    H.S. Ahmed, K. Mohamed, Eur. Phys. J. Plus 131, 292 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    G. Chattopadhyay, S. Chattopadhyay, Eur. Phys. J. Plus 127, 43 (2012)CrossRefGoogle Scholar
  22. 22.
    M.A.Z. Raja, Connect. Sci. 26, 195 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M.A.Z. Raja, R. Samar, E.S. Alaidarous, E. Shivanian, Appl. Math. Model. 40, 5964 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Z. Masood, K. Majeed, R. Samar, M.A.Z. Raja, Neurocomputing 221, 1 (2017)CrossRefGoogle Scholar
  25. 25.
    M.A.Z. Raja, Appl. Soft Comput. 24, 806 (2014)CrossRefGoogle Scholar
  26. 26.
    M.A.Z. Raja, I. Ahmad, I. Khan, M.I. Syam, A.M. Wazwaz, Front. Inf. Technol. Electron. Eng. 18, 464 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Effati, M. Pakdaman, Inf. Sci. 180, 1434 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Baymani, S. Effati, H. Niazmand, A. Kerayechian, Neural Comput. Appl. 26, 765 (2015)CrossRefGoogle Scholar
  29. 29.
    I. Ahmad et al., Neural Comput. Appl. 29, 449 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Guermoui, A. Rabehi, K. Gairaa, S. Benkaciali, Eur. Phys. J. Plus 133, 22 (2018)CrossRefGoogle Scholar
  31. 31.
    A. Jafarian, S. Measoomy, S. Abbasbandy, Appl. Soft Comput. 27, 391 (2015)CrossRefGoogle Scholar
  32. 32.
    M.A.Z. Raja, U. Farooq, N.I. Chaudhary, A.M. Wazwaz, Appl. Soft Comput. 38, 561 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Mehmood, A. Zameer, M.A.Z. Raja, Appl. Soft Comput. 67, 8 (2018)CrossRefGoogle Scholar
  34. 34.
    C.J. Zúñiga-Aguilar, A. Coronel-Escamilla, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, H.M. Romero-Ugalde, Eur. Phys. J. Plus 133, 75 (2018)CrossRefGoogle Scholar
  35. 35.
    M.A.Z. Raja, F.H. Shah, M. Tariq, I. Ahmad, Neural Comput. Appl. 29, 83 (2018)CrossRefGoogle Scholar
  36. 36.
    I. Ahmad, M.A.Z. Raja, M. Bilal, F. Ashraf, Neural Comput. Appl. 28, 929 (2017)CrossRefGoogle Scholar
  37. 37.
    M.A.Z. Raja, J.A. Khan, N.I. Chaudhary, E. Shivanian, Appl. Soft Comput. 38, 617 (2016)CrossRefGoogle Scholar
  38. 38.
    J. Sabouri, S. Effati, M. Pakdaman, Neural Proces. Lett. 45, 59 (2017)CrossRefGoogle Scholar
  39. 39.
    M.A.Z. Raja, F.H. Shah, E.S. Alaidarous, M.I. Syam, Appl. Soft Comput. 52, 605 (2017)CrossRefGoogle Scholar
  40. 40.
    M.A.Z. Raja, F.H. Shah, M.I. Syam, Neural Comput. Appl.  https://doi.org/10.1007/s00521-017-2949-0 (2017)
  41. 41.
    M.A.Z. Raja, K. Asma, M.S. Aslam, Int. J. Biomath. 11, 1850019 (2018)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Effati, A. Mansoori, M. Eshaghnezhad, Neurocomputing 168, 1188 (2015)CrossRefGoogle Scholar
  43. 43.
    M.A.Z. Raja, M.A.R. Khan, T. Mahmood, U. Farooq, N.I. Chaudhary, Can. J. Phys. 94, 474 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    M.A.Z. Raja, J.A. Khan, I.M. Qureshi, Ann. Math. Artif. Intel. 60, 229 (2010)CrossRefGoogle Scholar
  45. 45.
    M.A.Z. Raja, M.A. Manzar, R. Samar, Appl. Math. Model. 39, 3075 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    M.A.Z. Raja, R. Samar, M.A. Manzar, S.M. Shah, Math. Comput. Simul. 132, 139 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Kumar, N. Yadav, Natl. Acad. Sci. Lett. 38, 425 (2015)CrossRefGoogle Scholar
  48. 48.
    M.A.Z. Raja, J.A. Khan, N.I. Chaudhary, E. Shivanian, Appl. Soft Comput. 38, 617 (2016)CrossRefGoogle Scholar
  49. 49.
    K. Majeed et al., Appl. Soft Comput. 56, 420 (2017)CrossRefGoogle Scholar
  50. 50.
    M.A.Z. Raja, S. Azad, S.M. Shah, Appl. Soft Comput. 57, 293 (2017)CrossRefGoogle Scholar
  51. 51.
    J.A. Khan et al., Connect. Sci. 27, 377 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    M.A.Z. Raja, S.A. Niazi, S.A. Butt, Neurocomputing 219, 280 (2017)CrossRefGoogle Scholar
  53. 53.
    M.A.Z. Raja, M.A. Manzar, F.H. Shah, F.H. Shah, Appl. Soft Comput. 62, 359 (2018)CrossRefGoogle Scholar
  54. 54.
    I. Ahmad et al., SpringerPlus 5, 1866 (2016)CrossRefGoogle Scholar
  55. 55.
    M.A.Z. Raja, A. Zameer, A.U. Khan, A.M. Wazwaz, SpringerPlus 5, 1400 (2016)CrossRefGoogle Scholar
  56. 56.
    M.A.Z. Raja, M.S. Aslam, N.I. Chaudhary, W.U. Khan, Front. Inf. Technol. Electron. Eng. 19, 246 (2018)CrossRefGoogle Scholar
  57. 57.
    M.A.Z. Raja, M.S. Aslam, N.I. Chaudhary, M. Nawaz, S.M. Shah, Neural Comput. Appl.  https://doi.org/10.1007/s00521-017-3214-2 (2017)
  58. 58.
    S. Akbar et al., Wireless Personal Commun. 96, 1475 (2017)CrossRefGoogle Scholar
  59. 59.
    M.A.Z. Raja, A. Zameer, A.K. Kiani, A. Shehzad, M.A.R. Khan, Neural Comput. Appl. 29, 1169 (2018)CrossRefGoogle Scholar
  60. 60.
    A. Ara et al., Adv. Differ. Equ. 2018, 8 (2018)CrossRefGoogle Scholar
  61. 61.
    S. Lodhi, Neural Comput. Appl.  https://doi.org/10.1007/s00521-017-2991-y (2017)
  62. 62.
    I. Ahmad et al., Eur. Phys. J. Plus 133, 184 (2018)CrossRefGoogle Scholar
  63. 63.
    M.F. Fateh et al., Neural Comput. Appl. 28, 2165 (2017)CrossRefGoogle Scholar
  64. 64.
    M.A.Z. Raja, M.S. Aslam, N.I. Chaudhary, M. Nawaz, S.M. Shah, Neural Comput. Appl.  https://doi.org/10.1007/s00521-017-3214-2 (2017)
  65. 65.
    A. Mehmood, Neural Comput. Appl.  https://doi.org/10.1007/s00521-018-3406-4 (2018)
  66. 66.
    M.A.Z. Raja, J.A. Khan, A. Zameer, N.A. Khan, M.A. Manzar, Neural Comput. Appl.  https://doi.org/10.1007/s00521-017-3193-3 (2017)
  67. 67.
    A.A. Migdal, Recursion equations in gauge field theories, in World scientific series in 20th century physics, Vol. 11 (World Scientific, 1995) pp. 114-119Google Scholar
  68. 68.
    R.C. Myers, V. Periwal, Phys. Rev. D 42, 3600 (1990)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    S. Pasquetti, R. Schiappa, Ann. Henri Poincaré 11, 351 (2010)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    P.J. Forrester, Nucl. Phys. B 402, 709 (1993)ADSCrossRefGoogle Scholar
  71. 71.
    P.J. Forrester, Log-gases and random matrices (LMS-34) (Princeton University Press, 2010)Google Scholar
  72. 72.
    W. Fulton, Young tableaux: with applications to representation theory and geometry Vol. 35 (Cambridge University Press, 1997)Google Scholar
  73. 73.
    P.J. Forrester, N.S. Witte, Nonlinearity 16, 1919 (2003)ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    T. Nagao, K. Slevin, J. Math. Phys. 34, 2317 (1993)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    I. Corwin, Random Matrices: Theory Appl. 1, 1130001 (2012)MathSciNetCrossRefGoogle Scholar
  76. 76.
    P.J. Forrester, N.S. Witte, arXiv:1210.3381 (2012)Google Scholar
  77. 77.
    M.A.Z. Raja, S. Abbas, M.I. Syam, A.M. Wazwaz, Appl. Soft Comput. 62, 373 (2018)CrossRefGoogle Scholar
  78. 78.
    M.A.Z. Raja, T. Ahmed, S.M. Shah, J. Taiwan Inst. Chem. Eng. 80, 935 (2017)CrossRefGoogle Scholar
  79. 79.
    S. Akbar et al., Wireless Personal Commun. 96, 1475 (2017)CrossRefGoogle Scholar
  80. 80.
    A. Munir, Neural Comput. Appl.  https://doi.org/10.1007/s00521-017-3107-4 (2017)
  81. 81.
    I. Ahmad, Neural Comput. Appl.  https://doi.org/10.1007/s00521-017-2982-z (2017)
  82. 82.
    W. Lu, M. Liu, S. Lin, L. Li, IEEE Trans. Power Syst. 33, 901 (2018)ADSCrossRefGoogle Scholar
  83. 83.
    S. Datta, A. Ghosh, K. Sanyal, S. Das, Inf. Sci. 377, 1 (2017)CrossRefGoogle Scholar
  84. 84.
    M. Dehghan, F. Shakeri, Numer. Methods Partial Differ. Equ. 25, 1238 (2009)CrossRefGoogle Scholar
  85. 85.
    R. Ellahi, S. Abbasbandy, T. Hayat, A. Zeeshan, Numer. Methods Partial Differ. Equ. 26, 1070 (2010)Google Scholar
  86. 86.
    L. Zhu, Y. Wang, Nonlinear Dyn. 89, 1915 (2017)CrossRefGoogle Scholar
  87. 87.
    A. Dabiri, E.A. Butcher, Nonlinear Dyn., 1 (2017)Google Scholar
  88. 88.
    B.P. Moghaddam, J.A.T. Machado, Fract. Calc. Appl. Anal. 20, 1023 (2017)MathSciNetGoogle Scholar
  89. 89.
    W.M. Abd-Elhameed, Y.H. Youssri, Nonlinear Dyn. 89, 1341 (2017)CrossRefGoogle Scholar
  90. 90.
    A.H. Bhrawy, M.A. Zaky, Nonlinear Dyn. 89, 1415 (2017)CrossRefGoogle Scholar
  91. 91.
    K.A. Abro, A.A. Memon, M.A. Uqaili, Eur. Phys. J. Plus 133, 113 (2018)CrossRefGoogle Scholar
  92. 92.
    D. Kumar, J. Singh, D. Baleanu, Eur. Phys. J. Plus 133, 70 (2018)CrossRefGoogle Scholar
  93. 93.
    A.I. Aliyu, A. Yusuf, D. Baleanu, Eur. Phys. J. Plus 132, 528 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyAttockPakistan
  2. 2.Department of MathematicsPreston UniversityKohatPakistan
  3. 3.Hamdard Institute of Engineering and TechnologyHamdard UniversityIslamabadPakistan
  4. 4.Department of MathematicsUniversity of GujratGuiratPakistan
  5. 5.Department of MathematicsCOMSATS Institute of Information TechnologyAttockPakistan
  6. 6.Department of MathematicsCankaya UniversityAnkaraTurkey
  7. 7.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations