Advertisement

Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory

Regular Article
  • 13 Downloads

Abstract.

In this paper, size-dependent wave dispersion behavior of smart piezoelectric nanotubes conveying viscous fluid is analyzed considering surface stress effects and slip boundary conditions. The size effects of the nanotube are taken into account by making use of the nonlocal strain gradient theory (NSGT). To take the slip boundary conditions into consideration, the average velocity correction factor is utilized. The Newtonian method, in conjunction with the Rayleigh beam theory, is incorporated within the constitutive stress-strain relations of the surface and bulk of a piezoelectric material to derive the governing equations. The obtained equations involve size-dependent parameters, surface effects, slip boundary conditions, fluid viscosity and piezoelectric voltage. As a consequence, an analytical solution is applied to extract the wave dispersion relation of the nanotube. In addition, the influences of different factors, including nonlocal parameter, length scale parameter, surface effects, piezoelectric voltage, surface elastic modulus and surface residual stress on the wave dispersion characteristics of the piezoelectric nanotube, are examined. The effects of the piezoelectric voltage on the damping ratio of the nanotube are also studied. The obtained results in this paper are expected to be useful for more accurate prediction of the mechanical behaviors as well as of the wave propagation characteristics of viscous-fluid-conveying piezoelectric smart nanotubes. Meanwhile, the results will be helpful for efficient applications of piezoelectric nanotubes designing smart mechanical systems on a nanotechnology basis.

References

  1. 1.
    L.L. Ke, Y.S. Wang, Physica E 63, 52 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M.F. Liu, Appl. Math. Model. 35, 2443 (2011)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Amiri, R. Shabani, G. Rezazadeh, Microfluid Nanofluid 20, 18 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Amiri, I. Pournaki, E. Jafarzadeh, R. Shabani, G. Rezazadeh, Microfluid Nanofluid 20, 38 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Daga, N. Ganesan, K. Shankar, Sens. Actuators A-Phys. 150, 46 (2009)CrossRefGoogle Scholar
  6. 6.
    C. Liu, L.L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Compos. Struct. 106, 167 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Li, W. Feng, Z. Cai, Compos. Struct. 115, 41 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Ke, Y. Wang, J. Reddy, Compos. Struct. 116, 626 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Komijani, J. Reddy, M. Eslami, J. Mech. Phys. Solids 63, 214 (2014)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Xu, Eur. J. Mech.-A/Solids 46, 54 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Malekzadeh, M. Shojaee, Compos. Part B: Eng. 52, 84 (2013)CrossRefGoogle Scholar
  12. 12.
    S.M. Bağdatli, N. Togun, Int. J. Non-Linear Mech. 95, 132 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    L. Lu, X. Guo, J. Zhao, Int. J. Eng. Sci. 116, 12 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, M. Pang, L. Fan, Phys. Lett. 380, 2294 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Ebrahimi, M.R. Barati, A. Dabbagh, Int. J. Eng. Sci. 107, 169 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Marzbanrad, M. Boreiry, G.R. Shaghaghi, Appl. Phys. A 122, 1 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Lim, G. Zhang, J. Reddy, J. Mech. Phys. Solids 78, 298 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Shaat, F. Mahmoud, X.L. Gao, A.F. Faheem, Int. J. Mech. Sci. 79, 31 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Bahaadini, M. Hosseini, A. Jamalpoor, Physica B 509, 55 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    L. Wang, Physica E 43, 437 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Saffari, M. Hashemian, D. Toghraie, Physica B 520, 97 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    A. Fereidoon, E. Andalib, A. Mirafzal, Physica E 81, 205 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    H. Liu, Z. Lv, Q. Li, Microfluid Nanofluid 21, 140 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Chen, J. Guo, E. Pan, J. Sound Vib. 400, 550 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    F. Ebrahimi, A. Dabbagh, Compos. Struct. 162, 281 (2017)CrossRefGoogle Scholar
  26. 26.
    N. Sina, H. Moosavi, H. Aghaei, M. Afrand, S. Wongwises, Physica E 85, 109 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    F. Ebrahimi, M.R. Barati, P. Haghi, Eur. Phys. J. Plus 131, 383 (2016)CrossRefGoogle Scholar
  28. 28.
    F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Wang, K. Dong, F. Men, Y. Yan, X. Wang, Appl. Math. Model. 34, 878 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Narendar, S. Ravinder, S. Gopalakrishnan, Comput. Mater. Sci. 56, 179 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Narendar, S. Gopalakrishnan, Int. J. Mech. Sci. 64, 221 (2012)CrossRefGoogle Scholar
  32. 32.
    Q. Wang, J. Appl. Phys. 98, 124301 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    L. Li, Y. Hu, L. Ling, Compos. Struct. 133, 1079 (2015)CrossRefGoogle Scholar
  34. 34.
    L.H. Ma, L.L. Ke, Y.Z. Wang, Y.S. Wang, Physica E 86, 253 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 123, 81 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    F. Ebrahimi, M.R. Barati, A. Dabbagh, Appl. Phys. A 122, 949 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    J. Zang, B. Fang, Y.W. Zhang, T.Z. Yang, D.H. Li, Physica E 63, 147 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    L. Zhang, J. Liu, X. Fang, G. Nie, Eur. J. Mech.-A/Solids 46, 22 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    H. Liu, H. Liu, J. Yang, Physica E 93, 153 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    W. Xiao, L. Li, M. Wang, Appl. Phys. A 123, 388 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    L. Li, Y. Hu, L. Ling, Physica E 75, 118 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    M. Arefi, Acta Mech. 227, 2529 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    M. Arefi, A.M. Zenkour, Mech. Res. Commun. 79, 51 (2017)CrossRefGoogle Scholar
  44. 44.
    F. Kaviani, H.R. Mirdamadi, Comput. Struct. 116, 75 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Filiz, M. Aydogdu, Compos. Struct. 132, 1260 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Zeighampour, Y.T. Beni, I. Karimipour, Microfluid Nanofluid 21, 85 (2017)CrossRefGoogle Scholar
  47. 47.
    L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)CrossRefGoogle Scholar
  48. 48.
    Y.X. Zhen, Physica E 86, 275 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Yang, L. Zhang, C.W. Lim, J. Sound Vib. 331, 1567 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Y.Z. Wang, F.M. Li, K. Kishimoto, Comput. Mater. Sci. 48, 413 (2010)CrossRefGoogle Scholar
  51. 51.
    S. Narendar, S. Gopalakrishnan, Physica E 42, 1706 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Zhen, L. Zhou, Mod. Phys. Lett. B 31, 1750069 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    L. Wang, Comput. Mater. Sci. 49, 761 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    A.G. Arani, M. Roudbari, S. Amir, Appl. Math. Model. 40, 2025 (2016)MathSciNetCrossRefGoogle Scholar
  55. 55.
    R. Bahaadini, M. Hosseini, B. Jamali, Physica B 529, 57 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    F. Kaviani, H.R. Mirdamadi, Comput. Mater. Sci. 61, 270 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Noise and Vibration Control Research Laboratory, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
  2. 2.State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations