Advertisement

A new anisotropic solution by MGD gravitational decoupling

  • Rafael Pérez GraterolEmail author
Regular Article

Abstract.

This paper is focused on the search for new anisotropic analytic solutions to Einstein’s field equations for a spherically symmetric and static stellar distribution by means of the gravitational decoupling realized via the Minimal Geometric Deformation (MGD) approach. Firstly, a Buchdahl perfect fluid inside the stellar distribution is considered and the Einstein’s field equations are used in order to obtain the explicit form of the pressure and density for the perfect fluid. Then, the matching conditions for stellar distributions are used to find the constants involved in the Buchdahl solution in order to ensure the geometric continuity at the stellar surface. Finally, the Buchdahl solution is deformed to obtain the anisotropic solution and the matching conditions are used to find the constants involved in the new solution. The result is a new analytic and well-behaved anisotropic solution, in which all their physical parameters, such as the effective density, the effective radial and tangential pressure, fullfill each of the requirements for the physical acceptability available in the literature. Therefore, this solution can give a satisfactory description of realistic astrophysical compact objects like stars.

References

  1. 1.
    H. Weyl, Phys. Z. 20, 31 (1919)Google Scholar
  2. 2.
    G. Fodor, Generating spherically symmetric static perfect fluid solutions, arXiv:0011040 [gr-qc] (2000)Google Scholar
  3. 3.
    H.J. Schmidt, F. Homann, Gen. Relativ. Gravit. 32, 919 (2000)CrossRefADSGoogle Scholar
  4. 4.
    R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)CrossRefADSGoogle Scholar
  5. 5.
    M.K. Mak, T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002)CrossRefADSGoogle Scholar
  6. 6.
    M.K. Mak, T. Harko, Proc. R. Soc. London A 459, 393 (2003)CrossRefADSGoogle Scholar
  7. 7.
    R. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)CrossRefADSGoogle Scholar
  8. 8.
    R. Kippenhahm, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990)Google Scholar
  9. 9.
    A.I. Sokolov, JETP 79, 1137 (1980)Google Scholar
  10. 10.
    S.K. Maurya, Y.K. Gupta, B. Dayanandan, S. Ray, Astrophys. Space Sci. 361, 163 (2016)CrossRefADSGoogle Scholar
  11. 11.
    C. Germani, R. Maartens, Phys. Rev. D 64, 124010 (2001)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    J. Ovalle, Phys. Rev. D 95, 104019 (2017)CrossRefADSGoogle Scholar
  13. 13.
    J. Ovalle, Mod. Phys. Lett. A 23, 3247 (2008)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    J. Ovalle, Braneworld stars: anisotropy minimally projected onto the brane, in Gravitation and Astrophysics (ICGA9), edited by J. Luo (World Scientific, Singapore, 2010) pp. 173–182 arXiv:0909.0531v2 [gr-qc]Google Scholar
  15. 15.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    R. Casadio, J. Ovalle, Phys. Lett. B 715, 251 (2012)CrossRefADSGoogle Scholar
  18. 18.
    J. Ovalle, F. Linares, Phys. Rev. D 88, 104026 (2013)CrossRefADSGoogle Scholar
  19. 19.
    J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quantum Grav. 30, 175019 (2013)CrossRefADSGoogle Scholar
  20. 20.
    R. Casadio, J. Ovalle, R. da Rocha, Class. Quantum Grav. 30, 175019 (2014)Google Scholar
  21. 21.
    R. Casadio, J. Ovalle, R. da Rocha, Class. Quantum Grav. 32, 215020 (2015)CrossRefADSGoogle Scholar
  22. 22.
    J. Ovalle, L.A. Gergely, R. Casadio, Class. Quantum Grav. 32, 045015 (2015)CrossRefADSGoogle Scholar
  23. 23.
    R. Casadio, J. Ovalle, R. da Rocha, EPL 110, 40003 (2015)CrossRefADSGoogle Scholar
  24. 24.
    J. Ovalle, Int. J. Mod. Phys. Conf. Ser. 41, 1660132 (2016)CrossRefGoogle Scholar
  25. 25.
    R.T. Cavalcanti, A. Goncalves da Silva, R. da Rocha, Class. Quantum Grav. 33, 215007 (2016)CrossRefADSGoogle Scholar
  26. 26.
    R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016)CrossRefADSGoogle Scholar
  27. 27.
    R. da Rocha, Phys. Rev. D 95, 124017 (2017)CrossRefADSGoogle Scholar
  28. 28.
    R. da Rocha, Eur. Phys. J. C 77, 355 (2017)CrossRefADSGoogle Scholar
  29. 29.
    R. Casadio, P. Nicolini, R. da Rocha, GUP Hawking fermions from MGD black holes, arXiv:1709.09704 [hep-th]Google Scholar
  30. 30.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, Black holes by gravitational decoupling, arXiv:1804.03468v1 [gr-qc]Google Scholar
  31. 31.
    M.S.R. Delgati, K. Lake, Comput. Phys. Commun. 115, 395 (1998)CrossRefADSGoogle Scholar
  32. 32.
    H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    K. Lake, Phys. Rev. D 67, 104015 (2003)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    P. Boonserm, M. Visser, S. Weinfurtner, Phys. Rev. D 71, 124037 (2005)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    S.K. Maurya, M. Govender, Eur. Phys. J. C 77, 420 (2017)CrossRefADSGoogle Scholar
  36. 36.
    M. Colpi, S.L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    F.E. Schunck, E.W. Mielke, Class. Quantum. Grav. 20, R301 (2003)CrossRefADSGoogle Scholar
  38. 38.
    K.G. Zloshchastiev, Phys. Rev. Lett. 94, 121101 (2005)CrossRefADSGoogle Scholar
  39. 39.
    V. Dzhunushaliev, V. Folomeev, R. Myrzakulov, Douglas Singleton, JHEP 07, 094 (2008)CrossRefADSGoogle Scholar
  40. 40.
    H. Lu, A. Perkins, C.N. Pope, K.S. Stelle, Phys. Rev. Lett. 114, 171601 (2015)CrossRefADSGoogle Scholar
  41. 41.
    S. Chakraborty, S. SenGupta, Eur. Phys. J. C 76, 552 (2016)CrossRefADSGoogle Scholar
  42. 42.
    S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D 71, 043503 (2005)CrossRefADSGoogle Scholar
  43. 43.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)CrossRefADSGoogle Scholar
  44. 44.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)CrossRefADSGoogle Scholar
  45. 45.
    S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    L.G. Jaime, L. Patino, M. Salgado, Phys. Rev. D 83, 024039 (2011)CrossRefADSGoogle Scholar
  47. 47.
    P. Caate, L.G. Jaime, M. Salgado, Class. Quantum. Grav. 33, 155005 (2016)CrossRefADSGoogle Scholar
  48. 48.
    L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lust, A. Riotto, Fortsch. Phys. 64, 176 (2016)CrossRefADSGoogle Scholar
  49. 49.
    D. Vernieri, S. Carloni, On the Anisotropic Interior Solutions in Hoava Gravity and Einstein-aether Theory, arXiv:1706.06608[gr-qc]Google Scholar
  50. 50.
    T. Jacobson, D. Mattingly, Phys. Rev. D 64, 024028 (2001)MathSciNetCrossRefADSGoogle Scholar
  51. 51.
    C. Eling, T. Jacobson, Class. Quantum Grav. 23, 5625 (2006)CrossRefADSGoogle Scholar
  52. 52.
    Zdenek Stuchlik, Stanislav Hledik, Jan Novotny, Phys. Rev. D 94, 103513 (2016)CrossRefADSGoogle Scholar
  53. 53.
    Jan Novotny, Jan Hladik, Zdenek Stuchlik, Phys. Rev. D 95, 043009 (2017)CrossRefADSGoogle Scholar
  54. 54.
    Zdenek Stuchlik, Jan Schee, Bobir Toshmatov, Jan Hladik, Jan Novotny, JCAP 06, 056 (2017)CrossRefGoogle Scholar
  55. 55.
    H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, England, 2003)Google Scholar
  56. 56.
    L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    S. Thirukkanesh, F.C. Ragel, Ranjan Sharma, Shyam Das, Eur. Phys. J. C 78, 31 (2018)CrossRefADSGoogle Scholar
  58. 58.
    P. Burikham, T. Harko, M.J. Lake, Phys. Rev. D 94, 064070 (2016)MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)MathSciNetCrossRefADSGoogle Scholar
  60. 60.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C 78, 122 (2018)CrossRefADSGoogle Scholar
  61. 61.
    W. Israel, Nuovo Cimento B 44, 1 (1966)CrossRefADSGoogle Scholar
  62. 62.
    W. Israel, Nuovo Cimento B 48, 463 (1966)CrossRefADSGoogle Scholar
  63. 63.
    T.E. Kiess, Class. Quantum Grav. 26, 025011 (2009)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations