Tunable broadband reflector and narrowband filter of a dielectric and magnetized cold plasma photonic crystal

  • Asish Kumar
  • Narendra Kumar
  • Khem B. Thapa
Regular Article


The tunable broadband reflector and the narrowband filter of a periodic structure composed of dielectric and magnetized cold plasma materials have been studied. The optical properties are calculated theoretically using the well-known simple transfer matrix method (TMM). Dispersion relation and transmission spectra of the considered structure with right-hand polarization and left-hand polarization of the magnetized cold plasma materials are studied. The right-hand polarization and the left-hand polarization of the magnetized cold plasma are exhibited due to positive and negative values of the external magnetic field, respectively. The dispersion relation and transmission spectra of the considered periodic structure with the most valuable parameters, like external magnetic field, electron density, and effective collision frequency of the magnetized cold plasma, have been analyzed. The tunable narrow filter for right-hand polarization is obtained with a high value of the external magnetic field and a low value of the electron density. The broadband filter for the left-hand polarization is investigated with a low value of the external magnetic field and a high value of the electron density of the magnetized cold plasma. It is also noted that the impact of variation of effective collision frequency of the magnetized cold plasma is minute in both cases. These calculated results reveal an innovative idea for designing the tunable broadband reflector and narrowband filter.


  1. 1.
    V.P. Bykov, Sov. Phys. JETP 35, 269 (1972)ADSGoogle Scholar
  2. 2.
    K. Ohtaka, Phys. Rev. B 19, 5057 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)Google Scholar
  6. 6.
    Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, Science 282, 1679 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    T.F. Krauss, R.M. De La Rue, Progr. Quant. Electron. 23, 51 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    D.N. Chigrin, A.V. Lavrinenko, D.A. Yarotsky, S.V. Gaponenko, Appl. Phys. 68, 25 (1999)CrossRefGoogle Scholar
  9. 9.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2004)Google Scholar
  10. 10.
    X. Gu, X.F. Chen, Y.P. Chen, X.L. Zheng, Y.X. Xia, Y.L. Chen, Opt. Commun. 237, 53 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    S. Massaoudi, A. de Lustrac, I. Huynen, J. Electromagn. Waves Appl. 20, 1967 (2006)CrossRefGoogle Scholar
  12. 12.
    Q.R. Zheng, B.Q. Lin, N.C. Yuan, J. Electromagn. Waves Appl. 21, 199 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L. Tkeshelashvili, M. Wegener, Phys. Rep. 444, 101 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S.V. Gaponenko, Introduction to Nanophotonics (Cambridge University Press, Cambridge, 2010)Google Scholar
  15. 15.
    H. Hojo, K. Akimoto, A. Mase, Conference Digest on 28th International Confereuce on Infrared and Millimeter Waves Otsu (2003) pp. 347-348Google Scholar
  16. 16.
    H. Hitoshi, M. Atushi, J. Plasma Fusion Res. 80, 89 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    R. Kumar, Plasma Photonic Crystal, in Photonic Crystals - Innovative Systems, Lasers and Waveguides, edited by Alessandro Massaro (InTech, 2012)Google Scholar
  18. 18.
    H.G. Booker, Cold Plasma Waves (Springer-Verlag, New York, 1984) pp. 23--25Google Scholar
  19. 19.
    T.C. King, C.C. Yang, P.H. Hseih, T.W. Chang, C.J. Wu, Physica E 67, 7 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A.H. Aly, H.A. Elsayed, A.A. Ameen, S.H. Mohamed, Int. J. Mod. Phys. B 31, 1750239 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    V. Kumar, K.S. Singh, S.P. Ojha, Progr. Electromagn. Res. M 9, 227 (2009)CrossRefGoogle Scholar
  22. 22.
    X.K. Kong, S.B. Liu, H.F. Jhang, C.Z. Li, Phys. Plasmas 17, 103506 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A.H. Alyand, D. Mohamed, J. Superconduct. Novel Magn. 28, 1699 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Aghajamali, Appl. Opt. 55, 6336 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    A.H. Aly, H.A. Elsayed, S.A. El-Naggar, J. Mod. Opt. 64, 74 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    A.H. Aly, W. Sabra, H.A. Elsayed, Inter. J. Mod. Phys. B 31, 1750123 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A.H. Aly, H.A. Elsayed, J. Mod. Opt. 64, 871 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A.H. Aly, S.A. El-Naggar, H.A. Elsayed, Opt. Express 23, 15038 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A.H. Aly, in International Journal of Advanced Applied Physics Research, Special Issue (2016) pp. 43–47,
  30. 30.
    A.H. Aly, W. Sabra, H.A. Elsayed, J. Superconduct. Novel Magn. 26, 553 (2013)CrossRefGoogle Scholar
  31. 31.
    A.H. Aly, H. Sayed, J. Nanophoton. 11, 046020 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    A.H. Aly, D. Mohamed, H.A. Elsayed, D. Vigneswaran, J. Superconduct. Novel Magn. (2018)
  33. 33.
    P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, School of Physical and Decision SciencesBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.Department of PhysicsMody University of Science and TechnologySikarIndia

Personalised recommendations