Advertisement

Influence of a magnetic field on the flow of a micropolar fluid sandwiched between two Newtonian fluid layers through a porous medium

  • Pramod Kumar Yadav
  • Sneha Jaiswal
  • Taimoor Asim
  • Rakesh Mishra
Regular Article
  • 17 Downloads

Abstract.

The present paper is concerned with the flow of a micropolar/Eringen fluid sandwiched between two Newtonian fluid layers through a horizontal porous channel. The flow in both regions is steady, incompressible and the fluids are immiscible. The flow is driven by a constant pressure gradient and a magnetic field of uniform strength is applied in the direction perpendicular to the flow. The flow of electrically conducting fluids, in the three regions, is governed by the Brinkman equation with the assumption that the effective viscosity of each fluid is the same as the viscosity of the fluid. No-slip conditions at the end of the plates, continuity of velocity, continuity of shearing stress and constant rotational velocity at the interface have been used as the boundary conditions to get the solution of the considered problem. The numerical values of the solution obtained are used to analyse graphically the effect of various transport parameters, such as permeability of the porous region, magnetic number, viscosity ratio, etc., on the velocity profile and microrotational velocity profile. Also, the variations in the flow rate and the wall shear stress with respect to the governing parameters are presented in tabular form.

References

  1. 1.
    P.K. Yadav, Eur. Phys. J. Plus 133, 1 (2018)CrossRefGoogle Scholar
  2. 2.
    I. Ansari, S. Deo, Natl. Acad. Sci. Lett. 40, 211 (2017)CrossRefGoogle Scholar
  3. 3.
    P.K. Yadav, S. Jaiswal, B.D. Sharma, Appl. Math. Mech. 39, 993 (2018)CrossRefGoogle Scholar
  4. 4.
    P.K. Yadav, S. Jaiswal, Can. J. Phys.  https://doi.org/10.1139/cjp-2017-0998 (2018)
  5. 5.
    A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)CrossRefGoogle Scholar
  6. 6.
    A.C. Eringen, J. Math. Mech. 16, 1 (1966)MathSciNetGoogle Scholar
  7. 7.
    M.M. Khonsari, D.E. Brewe, ASLE Tribol. Trans. 32, 155 (1989)CrossRefGoogle Scholar
  8. 8.
    M.M. Khonsari, Acta Mech. 81, 235 (1990)CrossRefGoogle Scholar
  9. 9.
    H. Busuke, T. Tatsuo, Int. J. Eng. Sci. 7, 515 (1969)CrossRefGoogle Scholar
  10. 10.
    J.D. Lee, A.C. Eringen, J. Chem. Phys. 55, 4509 (1971)CrossRefADSGoogle Scholar
  11. 11.
    F.E. Lockwood, M.T. Benchaita, S.E. Friberg, ASLE Trans. 30, 539 (1986)CrossRefGoogle Scholar
  12. 12.
    T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 11, 905 (1973)CrossRefGoogle Scholar
  13. 13.
    T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 12, 273 (1974)CrossRefGoogle Scholar
  14. 14.
    G. Lukaszewicz, Micropolar fluids: Theory and Applications (Springer Science Business Media, 1999)Google Scholar
  15. 15.
    A.C. Eringen, Microcontinuum field theories: II Fluent media (Springer Science Business Media, 2001)Google Scholar
  16. 16.
    L. Bayliss, in Deformation and Flow in Biological Systems, edited by A. Frey-Wissling, (North Holland Publishing Co., Amsterdam, 1952)Google Scholar
  17. 17.
    Y.C. Fung, Federation Proc. 25, 1761 (1966)Google Scholar
  18. 18.
    H.S. Lew, Y.C. Fung, J. Biomech. 3, 23 (1970)CrossRefGoogle Scholar
  19. 19.
    G. Bugliarello, J. Sevilla, Biorheology 7, 85 (1970)CrossRefGoogle Scholar
  20. 20.
    H.L. Goldsmith, R. Skalak, Annu. Rev. Fluid Mech. 7, 213 (1975)CrossRefADSGoogle Scholar
  21. 21.
    T. Ariman, M.A. Turk, N.D. Sylvester, J. Appl. Mech. 41, 1 (1974)CrossRefADSGoogle Scholar
  22. 22.
    M.A. Ikbal, S. Chakravarty, P.K. Mandal, Comput. Math. Appl. 58, 1328 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A.J. Chamkha, J.C. Umavathi, A. Mateen, Int. J. Fluid Mech. Res. 31, 13 (2004)CrossRefGoogle Scholar
  24. 24.
    S.I. Bakhtiyarov, D.A. Siginer, A note on the laminar core-annular flow of two immiscible fluids in a horizontal tube, in Proceedings of the International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena (Begell house, Inc., Santa Barbara, 1997) pp. 107--111Google Scholar
  25. 25.
    J.C. Umavathi, A.J. Chamkha, M.H. Manjula, A. Al-Mudhaf, Can. J. Phys. 83, 705 (2005)CrossRefADSGoogle Scholar
  26. 26.
    J.C. Umavathi, I.C. Liu, J. Prathap-Kumar, D. Shaik-Meera, Appl. Math. Mech. 31, 1497 (2010)CrossRefGoogle Scholar
  27. 27.
    M.S. Malashetty, J.C. Umavathi, J. Prathap Kumar, Heat Mass Transf. 42, 977 (2006)CrossRefADSGoogle Scholar
  28. 28.
    J.P. Kumar, J.C. Umavathi, A.J. Chamkha, I. Pop, Appl. Math. Model. 34, 1175 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Lohrasbi, V. Sahai, Appl. Sci. Res. 45, 53 (1988)CrossRefGoogle Scholar
  30. 30.
    M.S. Malashetty, V. Leela, Int. J. Eng. Sci. 30, 371 (1992)CrossRefGoogle Scholar
  31. 31.
    M.S. Malashetty, J.C. Umavathi, Int. J. Multiphase Flow. 23, 545 (1997)CrossRefGoogle Scholar
  32. 32.
    A.J. Chamkha, J. Fluids Eng. 122, 117 (2000)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.School of Computing and EngineeringUniversity of HuddersfieldQueensgate, HuddersfieldUK

Personalised recommendations