Advertisement

Electric quadrupole transitions of deformed nuclei via Davidov-Chaban Hamiltonian within the Kratzer potential

  • A. Heydari
  • M. Hamzavi
  • M. Bigdeli
Regular Article

Abstract.

In this work, we investigate energy spectra, corresponding wave functions and the electric quadrupole probability transition rate for even-even nuclei using the collective model and the Davydov-Chaban Hamiltonian. Within the Kratzer potential for the \(\beta\) part and \(\gamma\) fixed at \(30^{\circ}\), we compare our results with the experimental ones to show our model’s accuracy.

References

  1. 1.
    A. Bohr, Mat. Fys. Medd. K. Dan. Vid. Selsk. 26, 1 (1952)Google Scholar
  2. 2.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (Benjamin, New York, 1975)Google Scholar
  3. 3.
    F. Iachello, Phys. Rev. Lett. 85, 3580 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    R. Budaca, A. Budaca, J. Phys. G: Nucl. Part. Phys. 42, 085103 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    I. Boztosun, D. Bonatsos, I. Inci, Phys. Rev. C 77, 044302 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    I. Inci, D. Bonatsos, I. Boztosun, Phys. Rev. C 84, 024309 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    L. Fortunato, Eur. Phys. J. A 26, 1 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    D. Bonatsos et al., Phys. Rev. C 88, 034316 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    D. Bonatsos et al., Phys. Rev. C 76, 064312 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    D. Bonatsos et al., Phys. Rev. C 83, 044321 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    G. Lévai, J. Arias, Phys. Rev. C 69, 014304 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    G. Lévai, J. Arias, Phys. Rev. C 81, 044304 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    P. Buganu, R. Budaca, J. Phys. G: Nucl. Part. Phys. 42, 105106 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    P. Buganu, A. Raduta, A. Faessler, J. Phys. G: Nucl. Part. Phys. 39, 025103 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Raduta, P. Buganu, Phys. Rev. C 83, 034313 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Raduta, P. Buganu, J. Phys. G: Nucl. Part. Phys. 40, 025108 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Raduta, P. Buganu, Phys. Rev. C 88, 064328 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    R. Budaca, arXiv:1405.3945 (2014)Google Scholar
  19. 19.
    M. Çapak et al., J. Phys. G: Nucl. Part. Phys. 42, 095102 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M. Chabab, A. Lahbas, M. Oulne, arXiv:1510.04525 (2015)Google Scholar
  21. 21.
    F. Iachello, Phys. Rev. Lett. 87, 052502 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    C. Tezcan, R. Sever, Int. J. Theor. Phys. 48, 337 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Buganu, R. Budaca, Phys. Rev. C 91, 014306 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    N. Zamfir, R. Casten, Phys. Lett. B 260, 265 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    E. McCutchan et al., Phys. Rev. C 76, 024306 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    A.S. Davydov, A.A. Chaban, Nucl. Phys. 20, 499 (1960)CrossRefGoogle Scholar
  27. 27.
    E.R. Marshalek, Theory of Collective Vibrations of Even-Even Spheroidal Nuclei (Lawrence Radiation Lab, 1962)Google Scholar
  28. 28.
    B.J. Raz, Phys. Rev. 114, 1116 (1959)ADSCrossRefGoogle Scholar
  29. 29.
    D. Bonatsos et al., Phys. Lett. B 588, 172 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    W. Greiner, J.A. Maruhn, Nuclear Models (Springer, 1996)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of physicsUniversity of ZanjanZanjanIran
  2. 2.Department of Mathematics and StatisticsUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations