Advertisement

A thermostatted kinetic theory model for event-driven pedestrian dynamics

  • Carlo BiancaEmail author
  • Caterina Mogno
Regular Article

Abstract.

This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.

References

  1. 1.
    J.H. Holland, J. Syst. Sci. Complex. 19, 1 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Fukui, Y. Ishibashi, J. Phys. Soc. Jpn. 68, 2861 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    V.J. Blue, J.L. Adler, Transp. Res. Rec.: J. Transp. Res. Board 1678, 135 (2000)CrossRefGoogle Scholar
  4. 4.
    X. Zheng, Y. Cheng, Comput. Math. Appl. 62, 4627 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Chraibi, A. Seyfried, A. Schadschneider, Phys. Rev. E 82, 046111 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Moussad, D. Helbing, G. Theraulaz, Proc. Natl. Acad. Sci. 108, 6884 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    F. Dietrich, G. Kster, Phys. Rev. E 89, 062801 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    D. Helbing, T. Vicsek, New J. Phys. 1, 13 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    C. Daganzo, Transp. Res. B 29B, 277 (1995)CrossRefGoogle Scholar
  10. 10.
    Z. Zhao, J. Yan, D. Liang, S. Ye, Proc. Eng. 71, 81 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Shaha, G.J. Joshib, P. Paridac, Proc. Soc. Behav. Sci. 104, 688 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Zhou, H. Chen, J. Yang, J. Yan, Math. Probl. Eng. 2014, 843096 (2014)Google Scholar
  13. 13.
    D. Helbing, I. Farkas, P. Molnar, T. Vicsek, Simulating of pedestrian crowds in normal and evacuation situations, in Pedestrian and Evacuation Dynamics, edited by M. Schreckenberg, S.D. Sharma (Springer Verlag, Berlin and Heidelberg, 2001) pp. 21--58Google Scholar
  14. 14.
    F. Li, S. Chen, X. Wang, F. Feng, Proc. Soc. Behav. Sci. 138, 314 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Shiwakoti, M. Sarvi, G. Rose, Modelling pedestrian behaviour under emergency conditions: State-of-the- art and future directions, Vol. 31, 31st Australasian Transport Research Forum (ATRF), Gold Coast (Victoria, Department of Transport, 2008) pp. 457--473Google Scholar
  16. 16.
    U. Weidmann, U. Kirsch, M. Schreckenberg (Editors), Pedestrian and Evacuation Dynamics, Vol. 2012 (Springer International Publishing, Switzerland, 2014)Google Scholar
  17. 17.
    C. Bianca, C. Mogno, Commun. Nonlinear Sci. Numer. Simul. 54, 221 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G.P. Morris, C.P. Dettmann, Chaos 8, 321 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    D.J. Evans, G.P. Morris, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, New York, 1990)Google Scholar
  20. 20.
    O.G. Jepps, L. Rondoni, J. Phys. A 43, 133001 (2010)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Bianca, J. Riposo, Eur. Phys. J. Plus 130, 159 (2015)CrossRefGoogle Scholar
  22. 22.
    C. Bianca, L. Brézin, Int. J. Biomath. 10, 1750072 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    R.B. Myerson, Game Theory: Analysis of Conict (Harvard University Press, Cambridge, 1997)Google Scholar
  24. 24.
    C. Bianca, C. Mogno, Math. Comput. Model. Dyn. Syst. 24, 207 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Dogbe, J. Math. Anal. Appl. 387, 512 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    R.L. Hughes, Annu. Rev. Fluid. Mech. 35, 169 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    A. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    C. Dogbe, Appl. Math. Inf. Sci. 7, 29 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    C. Dogbe, Comput. Math. Appl. 56, 1884 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    R.M. Colombo, P. Goatin, M.D. Rosini, Gakuto Int. Ser. Math. Sci. Appl. 32, 255 (2010)Google Scholar
  31. 31.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Y.-Q. Jiang, P. Zhang, S.C. Wong, R.-X. Liu, Physica A 389, 4623 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    K. Rio, W.H. Warren, A Data-Driven Model of Pedestrian following and Emergent Crowd Behaviour (Department of Cognitive, Linguistic, and Psychological Sciences Brown University Providence, RI, USA, 2012)Google Scholar
  34. 34.
    J.R. Dormand, P.J. Prince, J. Comput. Appl. Math. 6, 19 (1980)MathSciNetCrossRefGoogle Scholar
  35. 35.
    L.F. Shampine, M.W. Reichelt, SIAM J. Sci. Comput. 18, 1 (1997)MathSciNetCrossRefGoogle Scholar
  36. 36.
    C. Bianca, Math. Comput. Model. 51, 72 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Bellouquid, C. Bianca, Math. Comput. Model. 52, 802 (2010)CrossRefGoogle Scholar
  38. 38.
    P. Degond, B. Wennberg, Commun. Math. Sci. 5, 355 (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988)Google Scholar
  40. 40.
    A. Mellet, Kinet. Relat. Models 4, 873 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    C. Bianca, C. Dogbe, Nonlinearity 27, 2771 (2014)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    C. Bianca, C. Dogbe, A. Lemarchand, Acta Appl. Math. 189, 1 (2015)CrossRefGoogle Scholar
  43. 43.
    C. Bianca, C. Dogbe, A. Lemarchand, Eur. Phys. J. Plus 131, 41 (2016)CrossRefGoogle Scholar
  44. 44.
    H.J.P. Timmermans, Pedestrian Behavior: Models, Data Collection and Applications (Emerald Group Publishing Ltd., England, 2009)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Quartz EA 7393École Supérieure d’Ingénieurs en Génie Électrique, Productique et Management IndustrielCergy Pontoise CedexFrance
  2. 2.Laboratoire de Recherche en Eco-innovation Industrielle et EnergtiqueÉcole Supérieure d’Ingénieurs en Génie Électrique, Productique et Management IndustrielCergy Pontoise CedexFrance
  3. 3.European Commission, Joint Research CenterDirectorate for Energy, Transport and ClimateIspra (VA)Italy

Personalised recommendations