Advertisement

Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel

  • Mehmet Yavuz
  • Necati Ozdemir
  • Haci Mehmet Baskonus
Regular Article

Abstract.

In this paper, time-fractional partial differential equations (FPDEs) involving singular and non-singular kernel are considered. We have obtained the approximate analytical solution for linear and nonlinear FPDEs using the Laplace perturbation method (LPM) defined with the Liouville-Caputo (LC) and Atangana-Baleanu (AB) fractional operators. The AB fractional derivative is defined with the Mittag-Leffler function and has all the properties of a classical fractional derivative. In addition, the AB operator is crucial when utilizing the Laplace transform (LT) to get solutions of some illustrative problems with initial condition. We show that the mentioned method is a rather effective and powerful technique for solving FPDEs. Besides, we show the solution graphs for different values of fractional order \(\alpha\), distance term x and time value t . The classical integer-order features are fully recovered if \(\alpha\) is equal to 1.

References

  1. 1.
    J.F. Gómez-Aguilar, V.F. Morales-Delgado, M.A. Taneco-Hernández, D. Baleanu, R.F. Escobar-Jiménez, M.M. Al Qurashi, Entropy 18, 8 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Momani, Z. Odibat, Phys. Lett. A 355, 4 (2006)CrossRefGoogle Scholar
  3. 3.
    M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 1 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Cattani, Math. Prob. Eng. 2012, 502812 (2012)Google Scholar
  5. 5.
    M. Yavuz, N. Özdemir, Math. Model. Nat. Phenom. 13, 1 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Yavuz, N. Özdemir, Y.Y. Okur, in Proceedings of the ICFDA Conference, Novi Sad, 2016, edited by D.T. Spasic (Serbia, 2016)Google Scholar
  7. 7.
    S. Momani, R. Qaralleh, Appl. Math. Model. 31, 9 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Bildik, A. Konuralp, Int. J. Comput. Math. 83, 12 (2006)CrossRefGoogle Scholar
  9. 9.
    F. Evirgen, N. Özdemir, J. Comput. Nonlinear Dyn. 6, 2 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Yavuz, Int. J. Opt. Control 8, 1 (2018)Google Scholar
  11. 11.
    A.A. Elbeleze, A. Kiliçman, B.M. Taib, Math. Prob. Eng. 2013, 524852 (2013)Google Scholar
  12. 12.
    M. Yavuz, N. Ozdemir, Therm. Sci. 22, 1 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Kurulay, A. Secer, M.A. Akinlar, Appl. Math. Inf. Sci. 7, 1 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Yavuz, N. Özdemir, Fractal Fractional 2, 1 (2018)CrossRefGoogle Scholar
  15. 15.
    F. Evirgen, Int. J. Opt. Control 6, 2 (2016)MathSciNetGoogle Scholar
  16. 16.
    D. Baleanu, J.A.T. Machado, C. Cattani, M.C. Baleanu, X.-J. Yang, Abstr. Appl. Anal. 2014, 535048 (2014)Google Scholar
  17. 17.
    Z. Odibat, S. Momani, V.S. Erturk, Appl. Math. Comput. 197, 2 (2008)Google Scholar
  18. 18.
    W. Chen, S. Wang, Management 11, 1 (2015)Google Scholar
  19. 19.
    D.A. Koç, M. Gülsu, Int. J. Opt. Control 7, 3 (2017)Google Scholar
  20. 20.
    I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, B.M.V. Jarad, J. Comput. Phys. 228, 8 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Akgül, D. Baleanu, Int. J. Opt. Control 7, 1 (2017)Google Scholar
  22. 22.
    N. Özdemir, M. Yavuz, Acta Phys. Pol. A 132, 3 (2017)Google Scholar
  23. 23.
    V. Turut, N. Güzel, Abstr. Appl. Anal. 2013, 746401 (2013)CrossRefGoogle Scholar
  24. 24.
    B.B.I. Eroğlu, D. Avci, N. Özdemir, Acta Phys. Pol. A 132, 3 (2017)Google Scholar
  25. 25.
    F. Evirgen, Acta Phys. Pol. A 132, 3 (2017)Google Scholar
  26. 26.
    Y. Hu, B. Oksendal, A. Sulem, Infin. Dimens. Anal. Quant. Probab. Relat. Topics 6, 4 (2003)Google Scholar
  27. 27.
    N. Özdemir, O.P. Agrawal, D. Karadeniz, B.B. Iskender, J. Phys. A 42, 35 (2009)CrossRefGoogle Scholar
  28. 28.
    D. Avci, B.B.I. Eroglu, N. Ozdemir, Therm. Sci. 21, 2 (2017)Google Scholar
  29. 29.
    A.R. Seadawy, Comput. Math. Appl. 70, 4 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Yokus, D. Kaya, J. Nonlinear Sci. Appl. 10, 7 (2017)Google Scholar
  31. 31.
    H. Bulut, G. Yel, H.M. Baskonus, Turkish J. Math. Comput. Sci. 5, 1 (2016)Google Scholar
  32. 32.
    M. Heydari, M.R. Hooshmandasl, F. Mohammadi, C. Cattani, Commun. Nonlinear Sci. Numer. Simul. 19, 1 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Ravichandran, K. Jothimani, H.M. Baskonus, N. Valliammal, Eur. Phys. J. Plus 133, 109 (2018)CrossRefGoogle Scholar
  34. 34.
    R. Scherer, S.L. Kalla, Y. Tang, J. Huanget, Comput. Math. Appl. 62, 3 (2011)CrossRefGoogle Scholar
  35. 35.
    C. Li, D. Qian, Y.Q. Chen, Disc. Dyn. Nat. Soc. 2011, 562494 (2011)Google Scholar
  36. 36.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  37. 37.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 2 (2016)CrossRefGoogle Scholar
  38. 38.
    V.F. Morales-Delgado, J.F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R.F. Escobar-Jimenez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2016, 164 (2016)CrossRefGoogle Scholar
  39. 39.
    N.A. Sheikh, F. Ali, M. Saqib, I. Khan, S.A.A. Jan, A.S. Alshomrani, M.S. Alghamdi, Results Phys. 7, 789 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 1 (2016)CrossRefGoogle Scholar
  41. 41.
    I. Koca, A. Atangana, Therm. Sci. 21, 6A (2017)CrossRefGoogle Scholar
  42. 42.
    M.A. Dokuyucu, E. Celik, H. Bulut, H.M. Baskonus, Eur. Phys. J. Plus 133, 92 (2018)CrossRefGoogle Scholar
  43. 43.
    O.J.J. Algahtani, Chaos, Solitons Fractals 89, 552 (2016)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    I. Podlubny, Fractional Differential Equations, in Mathematics in Science and Engineering, Vol. 198 (Academic Press, San Diego, USA, 1999)Google Scholar
  45. 45.
    J.F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2017, 68 (2017)CrossRefGoogle Scholar
  46. 46.
    A. Ghorbani, Chaos, Solitons Fractals 39, 3 (2009)CrossRefGoogle Scholar
  47. 47.
    A. Tveito, R. Winther, Introduction to Partial Differential Equations: A Computational Approach (Springer Science & Business Media, 2004)Google Scholar
  48. 48.
    S. Momani, Z. Odibat, J. Comput. Appl. Math. 220, 1 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Necmettin Erbakan UniversityFaculty of ScienceKonyaTurkey
  2. 2.Balikesir UniversityFaculty of Art and ScienceBalikesirTurkey
  3. 3.Munzur UniversityFaculty of EngineeringTunceliTurkey

Personalised recommendations