Self-grafting carbon nanotubes on polymers for stretchable electronics

  • Piero Morales
  • Slavianka Moyanova
  • Luigi Pavone
  • Laura Fazi
  • Daniele Mirabile Gattia
  • Bruno Rapone
  • Anderson Gaglione
  • Roberto Senesi
Regular Article


Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications.

Supplementary material

13360_2018_12040_MOESM1_ESM.pdf (4.4 mb)
Supplementary material


  1. 1.
    S. Ijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    N. Tsubokawa, Polym. J. 37, 637 (2005)CrossRefGoogle Scholar
  3. 3.
    L. Vaisman, H.D. Wagner, G. Marom, Adv. Colloid Interface Sci. 128--130, 37 (2006)CrossRefGoogle Scholar
  4. 4.
    M.J. Rahman, T. Mieno, J. Nanomater. 2014, 508192 (2014)Google Scholar
  5. 5.
    D. Yang, X. Zhang, C. Wang, Y. Tang, J. Li, J. Hu, Prog. Nat. Sci. 19, 991 (2009)CrossRefGoogle Scholar
  6. 6.
    R.S. Ruoff, D. Qian, W.K. Liu, C. R. Phys. 4, 993 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Adv. Mater. 11, 161 (1999)CrossRefGoogle Scholar
  8. 8.
    C.Q. Ru, Phys. Rev. B 62, 10405 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74, 3803 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Q. Cao, S.H. Hur, Z.T. Zhu, Y. Sun, C. Wang, M.A. Meitl, M. Shim, J.A. Rogers, Adv. Mater. 18, 304 (2006)CrossRefGoogle Scholar
  11. 11.
    D. Baskaran, J.W. Mays, M.S. Bratcher, Angew. Chem. Int. Ed. Engl. 43, 2138 (2004)CrossRefGoogle Scholar
  12. 12.
    N. Satyanarayana, K. Rajan, S. Sinha, L. Shen, Tribol. Lett. 27, 181 (2007)CrossRefGoogle Scholar
  13. 13.
    J.H. Shi, B.X. Yang, S.H. Goh, Eur. Polym. J. 45, 1002 (2009)CrossRefGoogle Scholar
  14. 14.
    K. Zhang, J.Y. Lim, H.J. Choi, Diamond Relat. Mater. 18, 316 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    X.L. Wu, P. Liu, eXPRESS Polym. Lett. 4, 723 (2010)CrossRefGoogle Scholar
  16. 16.
    M.T. Byrne, Y.K. Gun’ko, Adv. Mater. 22, 1672 (2010)CrossRefGoogle Scholar
  17. 17.
    T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 321, 1468 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M.K. Shin, J. Oh, M. Lima, M.E. Kozlov, S.J. Kim, R.H. Baughman, Adv. Mater. 22, 2663 (2010)CrossRefGoogle Scholar
  19. 19.
    Z. Zhan, R. Lin, V.T. Tran, J. An, Y. Wei, H. Du, T. Tran, W. Lu, ACS Appl. Mater. Interfaces 9, 37921 (2017)CrossRefGoogle Scholar
  20. 20.
    F. Vitale, S.R. Summerson, B. Aazhang, C. Kemere, M. Pasquali, ACS Nano 9, 4465 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Song, S. Liu, Z. Gan, L. Qiang, H. Cao, H. Yan, Microelectron. Eng. 86, 2330 (2009)CrossRefGoogle Scholar
  22. 22.
    Z.F. Liu, S. Fang, F.A. Moura, J.N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D.S. Galvão, C.S. Haines, N.Y. Yuan, S.G. Yin, D.W. Lee, R. Wang, H.Y. Wang, W. Lv, C. Dong, R.C. Zhang, M.J. Chen, Q. Yin, Y.T. Chong, R. Zhang, X. Wang, M.D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, R.H. Baughman, Science 349, 400 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    T.Y. Tsai, C.Y. Lee, N.H. Tai, W.H. Tuan, Appl. Phys. Lett. 95, 013107 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    I.R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger, E.M. Moraud, J. Gandar, M. Capogrosso, T. Milekovic, L. Asboth, R.F. Torres, N. Vachicouras, Q. Liu, N. Pavlova, S. Duis, A. Larmagnac, J. Vörös, S. Micera, Z. Suo, G. Courtine, S.P. Lacour, Science 347, 6218 (2015)CrossRefGoogle Scholar
  25. 25.
    Y.C. Chen, H.L. Hsu, Y.T. Lee, H.C. Su, S.J. Yen, C.H. Chen, W.L. Hsu, T.R. Yew, S.R. Yeh, D.J. Yao, Y.C. Chang, H. Chen, J. Neural Eng. 8, 034001 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    G. Gabriel, R. Gomez, M. Bongard, N. Benito, E. Fernandes, R. Villa, Biosens. Bioelectron. 24, 1942 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Shoval, C. Adams, M. David-Pur, M. Shein, Y. Hanein, Front. Neuroeng. 2, 4 (2009)CrossRefGoogle Scholar
  28. 28.
    M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, Y. Hanein, Biomed. Microdev. 16, 43 (2014)CrossRefGoogle Scholar
  29. 29.
    C.M. Lin, Y.T. Lee, S.R. Yeh, W.L. Fang, Biosens. Bioelectron. 24, 2791 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Shein, A. Greenbaum, T. Gabay, R. Sorkin, M. David-Pur, E. Ben-Jacob, Y. Hanein, Biomed. Microdev. 11, 495 (2009)CrossRefGoogle Scholar
  31. 31.
    M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, R.E. Smalley, J. Vac. Sci. Technol. A 19, 1800 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    S.J. Yoo, Y. Nam, J. Neurosci. Methods 204, 28 (2012)CrossRefGoogle Scholar
  33. 33.
    R.C. Tenent, T.M. Barnes, J.D. Bergeson, A.J. Ferguson, B. To, L.M. Gedvilas, M.J. Heben, J.L.J. Blackburn, Adv. Mater. 21, 3210 (2009)CrossRefGoogle Scholar
  34. 34.
    C. Henle, M. Raab, J.G. Cordeiro, S. Doostkam, Biomed. Microdev. 13, 59 (2011)CrossRefGoogle Scholar
  35. 35.
    S.S. Tallury, M.A. Pasquinelli, J. Phys. Chem. B 114, 4122 (2010)CrossRefGoogle Scholar
  36. 36.
    S.S. Tallury, M.A. Pasquinelli, J. Phys. Chem. B 114, 9349 (2010)CrossRefGoogle Scholar
  37. 37.
    C.Y. Wei, NanoLett. 6, 1627 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    C. Ke, M. Zheng, I.T. Bae, G. Zhou, J. Appl. Phys. 107, 104305 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    A.D. Willey, Thin Films of Carbon Nanotubes and Nanotube/Polymer Composites, Thesis, Brigham Young University (2012)Google Scholar
  40. 40.
    G. Buzsaki, C.A. Anastassiou, Ch. Koch, Nat. Rev. Neurosci. 13, 407 (2012)CrossRefGoogle Scholar
  41. 41.
    E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran, J. Neural Eng. 1, 63 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    G. Schalk, K.J. Miller, N.R. Anderson, J.A. Wilson, M.D. Smyth, J.G. Ojemann, D.W. Moran, J.R. Wolpaw, E.C. Leuthardt, J. Neural Eng. 5, 75 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    J.C. Williams, J.A. Hippensteel, J. Dilgen, W. Shain, D.R. Kipke, J. Neural Eng. 4, 410 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    K.J. Maloney, E.G. Cape, J. Gotman, B.E. Jones, Neuroscience 76, 541 (1997)CrossRefGoogle Scholar
  45. 45.
    J.C. Sanchez, A. Gunduz, P.R. Carney, J.C. Principe, J. Neurosci. Methods 167, 63 (2008)CrossRefGoogle Scholar
  46. 46.
    S.F. Cogan, Annu. Rev. Biomed. Eng. 10, 275 (2008)CrossRefGoogle Scholar
  47. 47.
    F. Sauter-Starace, O. Bibari, F. Berger, P. Caillat, A.L. Benabid, in 4th International IEEE/EMBS Conference on Neural Engineering, Antalya (2009) pp. 112--115Google Scholar
  48. 48.
    K.J. Wisneski, N. Anderson, G. Schalk, M. Smyth, D. Moran, E.C. Leuthardt, Stroke 39, 3351 (2008)CrossRefGoogle Scholar
  49. 49.
    J. Yuan, Y. Chen, E. Hirsh, Neurol. Sci. 33, 723 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ENEA Centro Ricerche della CasacciaRomaItaly
  2. 2.Centro NASTUniversità degli Studi di Roma “Tor Vergata”RomaItaly
  3. 3.IRCCS NeuromedPozzilliItaly
  4. 4.Dipartimento di FisicaUniversità degli Studi di Roma “Tor Vergata”RomaItaly
  5. 5.Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”RomaItaly

Personalised recommendations