Effect of magnetic field on Ni nanoclusters prepared via a combined plasma-enhanced chemical vapor deposition and radio frequency sputtering

  • Mohammad Ahmadirad
  • Ahmad Yazdani
  • Kourosh Rahimi
Regular Article
  • 5 Downloads

Abstract.

Nickel nanoparticles were prepared by a co-deposition technique via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) and radio frequency (RF) sputtering methods using a Ni target and acetylene gas. To prevent the prepared nanoparticles from agglomeration and in order for the nucleus of the nanocluster to be formed, a DLC film was made as host. We fixed the RF power at 300W and the deposition time at 30min. We prepared four different nickel samples by varying the initial pressure of acetylene gas in the chamber. It is shown as the amount of nickel increases, the electrical resistance decreases where the structure is transformed from a nanoparticle form to a nanocluster form. The nanoclusters have a cone structure, because the initial nanoparticles serve as nuclei for nanoclusters, and deposition is carried out vertically. By applying a magnetic field, it was found that the cluster structure gives a better response to it. The absorbance value at 800nm was improved from 0.5% for the pure nanoparticle sample (#1) to 6.4% for the nanocluster structure (#4). As a result, the nanocluster structure is more suitable for magnetic sensors.

References

  1. 1.
    D.L. Feldheim, A.F. Colby Jr. (Editors), Metal Nanoparticles: Synthesis Characterization and Application (Marcel Dekker, 2002)Google Scholar
  2. 2.
    S. Ţalu et al., Ind. Eng. Chem. Res. 54, 8212 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Kidwai, Nanoparticles in Green Catalysis: Handbook of Green Chemistry (Wiley, 2010)Google Scholar
  4. 4.
    L.L. Beecroft, C.K. Ober, Chem. Mater. 9, 1302 (1997)CrossRefGoogle Scholar
  5. 5.
    A. Meldrum, L.A. Boatner, C.W. White, Nucl. Instrum. Methods Phys. Res. B 178, 7 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    G. Schmid, D. Fenske, Phil. Trans. R. Soc. A 368, 1207 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Chen, D.L. Peng, D. Lin, X. Luo, Nanotechnology 18, 505703 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    W. Szu-Han, C. Dong-Hwang, J. Colloid Interface Sci. 259, 282 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Wang Sh-Fu et al., Sensors Actuators B 123, 495 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Robertson, Phys. Status Solidi A 205, 2233 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    T. Ghodselahi et al., Surf. Coat. Technol. 202, 2731 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Kataja, T.K. Hakala, A. Julku, M.J. Huttunen, Nat. Commun. 6, 7072 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Robertson, Mater. Sci. Eng. R: Rep. 37, 129 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Ohring, The Materials Science of Thin Films (AcademicPress, Inc, 1992)Google Scholar
  15. 15.
    M. Spolaore, V. Antoni, M. Bagatin, A. Buffa, Surf. Coat. Technol. 116, 1083 (1999)CrossRefGoogle Scholar
  16. 16.
    R.E.H. Clark, D.H. Reiter (Editors), Nuclear Fusion Research (Springer, 2005)Google Scholar
  17. 17.
    Y. Kudriavtsev et al., Appl. Surf. Sci. 239, 273 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 63, 121405(R) (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Creighton, D.J. Eadon, J. Chem. Soc. Faraday Trans. 87, p3881 (1991)CrossRefGoogle Scholar
  20. 20.
    N.F. Mott, E.A. Davis, Electronic Process in Non-crystalline Materials (Clarendon Press, 1979)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Ahmadirad
    • 1
  • Ahmad Yazdani
    • 1
  • Kourosh Rahimi
    • 1
  1. 1.Condensed Matter Group, Department of Basic SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations