Doppler broadening of neutron-induced resonances using ab initio phonon spectrum

  • G. NoguereEmail author
  • P. Maldonado
  • C. De Saint Jean
Regular Article


Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO2 samples at \(T=23.7\) K and \(T=293.7\) K, to investigate the limitations of these models when an ab initio phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths \(\Gamma_{\gamma_{\lambda}}\) of the 238U resonances \(\lambda\). The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature (\( T_{N}=30.8\) K).

Supplementary material

13360_2018_12009_MOESM1_ESM.txt (30 kb)
Supplementary material


  1. 1.
    A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 17, 563 (1960)Google Scholar
  2. 2.
    W.E. Lamb, Phys. Rev. 55, 190 (1939)ADSCrossRefGoogle Scholar
  3. 3.
    M.S. Nelkin, D.E. Parks, Phys. Rev. 119, 1060 (1960)ADSCrossRefGoogle Scholar
  4. 4.
    R.E. Word, G.T. Trammell, Phys. Rev. B 24, 2430 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    A. Meister, Experimental study of the Doppler broadening of neutron resonances at GELINA, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Trieste, Italy, 1997 (SIF, Bologna, 1997)Google Scholar
  6. 6.
    N.M. Larson, Updated Users’ Guide for SAMMY: Multi-level R-Matrix Fits to Neutron Data Using Bayes Equations (Oak Ridge National Laboratory, USA, 2008)Google Scholar
  7. 7.
    P. Archier et al., Nucl. Data Sheets 118, 488 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    H.E. Jackson, J.E. Lynn, Phys. Rev. 127, 461 (1962)ADSCrossRefGoogle Scholar
  9. 9.
    G.M. Borgonovi et al., Phys. Rev. C 1, 2054 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    T.J. Haste, M.G. Sowerby, J. Phys. D 12, 1203 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    D.G. Naberejnev, C. Mounier, R. Sanchez, Nucl. Sci. Eng. 131, 222 (1999)CrossRefGoogle Scholar
  12. 12.
    A.J. Villanueva, J.R. Granada, Ann. Nucl. Energy 38, 1389 (2011)CrossRefGoogle Scholar
  13. 13.
    H.I. Kim et al., Eur. Phys. J. A 52, 170 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    L. Leal et al., EPJ Nucl. Sci. Technol. 2, 43 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Henriksson, O. Schwerer, D. Rochman, M.V. Mikhaylyukova, N. Otuka, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, 2007Google Scholar
  16. 16.
    A. Brusegan, G. Noguere, F. Gunsin, J. Nucl. Sci. Technol. Suppl. 2, 685 (2002)CrossRefGoogle Scholar
  17. 17.
    H.A. Bethe, G. Placzek, Phys. Rev. 51, 450 (1937)ADSCrossRefGoogle Scholar
  18. 18.
    A.W. Solbrig, Am. J. Phys. 29, 257 (1961)ADSCrossRefGoogle Scholar
  19. 19.
    R.E. MacFarlane, New thermal neutron scattering files for ENDF/B-VI, Los Alamos National Laboratory Report (1994)Google Scholar
  20. 20.
    M. Mattes, J. Keinert, Thermal neutron scattering data for the moderator materials in ENDF-6 format and as ACE library for MCNP codes, International Atomic Energy Agency Report, INDC(NDS)-0470 (2005)Google Scholar
  21. 21.
    G. Baym, Phys. Rev. 121, 741 (1961)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A.S. Poplavnoi, T.P. Fedorova, Moscow Univ. Phys. Bull. 65, 397 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Maradudin, P.A. Flinn, Phys. Rev. 129, 2529 (1963)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Yun, D. Legut, P.M. Oppeneer, J. Nucl. Mater. 426, 109 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    P. Maldonado et al., Phys. Rev. B 93, 144301 (2016)ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    G. Kresse, J. Furthmuller, Comput. Matter Sci. 6, 15 (1996)CrossRefGoogle Scholar
  28. 28.
    A. Courcelle, G. Noguere, N.M. Larson, Experimental validation of the crystal lattice model in the R-matrix code SAMMY, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, USA, 2004Google Scholar
  29. 29.
    G. Dolling, R.A. Cowley, A.D.B. Woods, Can. J. Phys. 43, 1397 (1965)ADSCrossRefGoogle Scholar
  30. 30.
    A.T.D. Butland, Ann. Nucl. Sci. Eng. 1, 575 (1974)CrossRefGoogle Scholar
  31. 31.
    V. Gressier, Nouvelle détermination expérimentale des paramètres de résonances neutroniques du ${}^{237}$Np en dessous de 500 eV, PhD thesis, Universtity Paris XI, 1999Google Scholar
  32. 32.
    R.L. D’Avila, R.A. Karam, Ann. Nucl. Energy 18, 249 (1991)CrossRefGoogle Scholar
  33. 33.
    R.L. D’Avila, R.A. Karam, Ann. Nucl. Energy 18, 259 (1991)CrossRefGoogle Scholar
  34. 34.
    R.L. D’Avila, R.A. Karam, Ann. Nucl. Energy 18, 427 (1991)CrossRefGoogle Scholar
  35. 35.
    J.L. Rowland, Ann. Nucl. Energy 19, 413 (1992)CrossRefGoogle Scholar
  36. 36.
    G. Dolling, Phonon dispersion relation of uranium nitrate above and below the Neel temperature, in Proceedings of the International Conference on Lattice Dynamics, Paris, France, 1977Google Scholar
  37. 37.
    K. Gofryk et al., Nat. Commun. 5, 4551 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Jaime et al., Nat. Commun. 8, 99 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    R. Caciuffo et al., Phys. Rev. B 59, 13892 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    A. Meister, A. Santamarina, The effective temperature for Doppler broadening of neutron resonances in UO$_2$ lattices, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Long Island, USA, 1998Google Scholar
  41. 41.
    B.T.M. Willis, Proc. R. Soc. London A 274, 122 (1963)ADSCrossRefGoogle Scholar
  42. 42.
    B.T.M. Willis, Proc. R. Soc. London A 274, 134 (1963)ADSCrossRefGoogle Scholar
  43. 43.
    A. Albinati, Acta Cryst. A 36, 265 (1980)CrossRefGoogle Scholar
  44. 44.
    M.T. Hutchings, J. Chem. Soc., Faraday Trans. 2 83, 1083 (1987)CrossRefGoogle Scholar
  45. 45.
    H. Serizawa et al., J. Alloys Compd. 271-273, 386 (1998)CrossRefGoogle Scholar
  46. 46.
    P. Ruello et al., J. Phys. Chem. Solids 66, 823 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Physical StudiesCEA/DEN CadaracheSaint Paul Les DuranceFrance
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations