Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model

  • F. R. Tang
  • Rong Zhang
  • Huichao Li
  • C. N. Li
  • Wei Liu
  • Long Bai
Regular Article
  • 18 Downloads

Abstract.

The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.

References

  1. 1.
    F. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    A. Vaudrey, F. Lanzetta, M. Feidt, J. Non-Equilib. Thermodyn. 39, 199 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)CrossRefGoogle Scholar
  4. 4.
    H.S. Leff, Am. J. Phys. 55, 602 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    V.A. Mironova, A.M. Tsirlin, V.A. Kazakov, R.S. Berry, J. Appl. Phys. 76, 629 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamics optimization of Finite-Time Processes (Wiley, Chichester, 2000)Google Scholar
  7. 7.
    C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    A. De Vos, J. Phys. Chem. 95, 4534 (1991)CrossRefGoogle Scholar
  9. 9.
    J.M. Gordon, J. Appl. Phys. 73, 8 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    L. Chen, F. Sun, C. Wu, J. Phys. D 31, 1595 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Ondrechen, R.S. Berry, B. Andresena, J. Chem. Phys. 72, 5118 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    G. Lin, J. Chen, E. Bruückb, Appl. Energy 78, 123 (2004)CrossRefGoogle Scholar
  13. 13.
    J.M. Gordon, V.N. Orlov, J. Appl. Phys. 74, 5303 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    J. Guo, Y. Wang, J.C. Chen, J. Appl. Phys. 112, 103504 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    H. Hooyberghs, B. Cleuren, A. Salazar, J.O. Indekeu, C. Van den Broeck, J. Chem. Phys. 139, 134111 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    J. Guo, J. Wang, Y. Wang, J.C. Chen, Phys. Rev. E 87, 012133 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    C. de Tomás, A.C. Hernández, J.M.M. Roco, Phys. Rev. E 85, 010104(R) (2012)ADSCrossRefGoogle Scholar
  19. 19.
    F. Angulo-Brown, J. Appl. Phys. 69, 7465 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    A.C. Hernández, A. Medina, J.M.M. Roco, J.A. White, S. Velasco, Phys. Rev. E 63, 037102 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    N. Sánchez-Salas, L. López-Palacios, S. Velasco, A.C. Hernández, Phys. Rev. E 82, 051101 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    C. de Tomás, J.M.M. Roco, A.C. Hernández, Y. Wang, Z.C. Tu, Phys. Rev. E 87, 012105 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    A.C. Hernández, A. Medina, J.M.M. Roco, New. J. Phys. 17, 075011 (2015)CrossRefGoogle Scholar
  24. 24.
    D. Xia, L.G. Chen, F.R. Sun, J. Energy Inst. 83, 151 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Sieniutycz, Int. J. Heat Mass Transfer 51, 5859 (2008)CrossRefGoogle Scholar
  26. 26.
    N. Sanchez-Salas, J.C. Chimal-Eguia, M.A. Ramirez-Morenoa, Physica A 446, 224 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    C. Van den Broeck, EPL 101, 10006 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Barranco, A. Ocampo, J.C. Pacheco, F. Angulo, J. Phys.: Conf. Ser. 792, 012097 (2017)Google Scholar
  29. 29.
    A. Ocampo-Garcia, M.A. Barranco-Jiménez, F. Angulo-Brown, Physica A 488, 149 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Gonzalez-Ayala, A.C. Hernandez, J.M.M. Roco, J. Stat. Mech. 2016, 073202 (2016)CrossRefGoogle Scholar
  31. 31.
    R.S. Johal, Phys. Rev. E 96, 012151 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    J. Gonzalez-Ayala, J.M.M. Roco, A. Medina, A.C. Hernández, Entropy 19, 182 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    J. Gonzalez-Ayala, J.M.M. Roco, A. Medina, A.C. Hernández, Phys. Rev. E 97, 022139 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    R. Long, W. Liu, Phys. Rev. E 89, 062119 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Zhang, C. Huang, G. Lin, J. Chen, Phys. Rev. E 93, 032152 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    J. Gonzalez-Ayala, A.C. Hernández, J.M.M. Roco, Phys. Rev. E 95, 022131 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    R. Long, W. Liu, Phys. Rev. E 91, 042127 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. R. Tang
    • 1
  • Rong Zhang
    • 1
  • Huichao Li
    • 1
  • C. N. Li
    • 1
  • Wei Liu
    • 1
  • Long Bai
    • 1
  1. 1.School of physical science and technologyChina University of Mining and TechnologyXuzhouChina

Personalised recommendations