Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: II. Second-order non-Thomas mechanisms and the cross sections

  • Zohre Safarzade
  • Farideh Shojaei Akbarabadi
  • Reza Fathi
  • Michael J. Brunger
  • Mohammad A. Bolorizadeh
Regular Article
  • 20 Downloads

Abstract.

A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.

References

  1. 1.
    I.M. Cheshire, Proc. Phys. Soc. 84, 89 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    B.H. Bransden, D.P. Dewangan, Adv. At. Mol. Opt. Phys. 25, 343 (1988)Google Scholar
  3. 3.
    J.H. McGuire, Adv. At. Mol. Opt. Phys. 29, 217 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Dž. Belkić, S. Saini, H.S. Taylor, Phys. Rev. A 36, 1601 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    H. Marxer, J.S. Briggs, J. Phys. B 25, 3823 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    E. Ghanbari Adivi, M.A. Bolorizadeh, J. Phys. B 37, 3321 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A. Salin, J. Phys. B 3, 937 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    Dž. Belkić, R. Janev, J. Phys. B 6, 1020 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    Dž. Belkić, Phys. Scr. 43, 561 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    S.G. Tolmanov, J.H. McGuire, Phys. Rev. A 62, 032711 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    L. Gulyás, P.D. Fainstein, T. Shirai, Phys. Rev. A 65, 052720 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    P.N. Abufager, P.D. Fainstein, A.E. Martínez, R.D. Rivarola, J. Phys. B 38, 11 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M.B. Shah, C. McGrath, C. Illescas, B. Pons, A. Riera, H. Luna, D.S.F. Crothers, S.F.C. O’Rourke, H.B. Gilbody, Phys. Rev. A 67, 010704 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    L. Sarkadi, R.O. Barrachina, Phys. Rev. A 71, 062712 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    T.R. Bratton, C.L. Cocke, J.R. Macdonald, J. Phys. B 10, L517 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    C.L. Cocke et al., Phys. Rev. Lett. 36, 782 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    E. Horsdal-Pedersen, C.L. Cocke, M. Stockli, Phys. Rev. Lett. 50, 1910 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    E. Horsdal-Pedersen, F. Folkmann, N.H. Pederson, J. Phys. B 15, 739 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    M. Gudmundsson, D. Fischer, N. Haag, H.A.B. Johansson, D. Misra, P. Reinhed, H. Schmidt-Böcking, R. Schuch, M. Schöffler, K. Støchkel, H.T. Schmidt, H. Cederquist, J. Phys. B 43, 185209 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    N.V. de Castro Faria, F.L. Freire, A.G. de Inho, Phys. Rev. A 37, 280 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    H. Atan, W. Steckelmacher, M.W. Lucas, J. Phys. B 24, 2559 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    K. Støchkel, Electron-transfer processes in fast ion-atom collisions, PhD Thesis, Department of Physics Stockholm University, 2005Google Scholar
  23. 23.
    H.-K. Kim, M.S. Schöffler, S. Houamer, O. Chuluunbaatar, J.N. Titze, L.Ph.H. Schmidt, T. Jahnke, H. Schmidt-Böcking, A. Galstyan, Yu.V. Popov, R. Dörner, Phys. Rev. A 85, 022707 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    L.D. Faddeev, Sov. Phys. JEPT 12, 1014 (1961)Google Scholar
  25. 25.
    E. Ghanbari Adivi, M.J. Brunger, M.A. Bolorizadeh, L. Campbell, Phys. Rev. A 38, 022704 (2007)CrossRefGoogle Scholar
  26. 26.
    M.F. Ferreira da Silva, J.M.P. Serrao, J. Phys. B 36, 2357 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    D.S.F. Crothers, L.J. Dube, Adv. At. Mol. Phys. 30, 287 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    L. Sarkadi, L. Lugosi, K. Tökési, L. Gulyás, A. Kövér, J. Phys. B 34, 4901 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    H.T. Schmidt, A. Fardi, J. Jensen, P. Reinhed, R. Schuch, K. Støchkel, H. Zettergren, H. Cederquist, C.L. Cocke, Nucl. Instrum. Methods Phys. Res. B 233, 43 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    A.L. Godunov, C.T. Whelan, H.R.J. Walers, V.S. Schipakov, M. Schöffler, V. Mergel, R. Dörner, O. Jagutzki, L.H. Schmidt, J. Titze, H. Schmidt-Böcking, Phys. Rev. A 71, 052712 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Hahn, Phys. Rev. A 40, 2950 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    A. Jain, R. Shingal, T.J.M. Zouros, Phys. Rev. A 43, 1621 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    P.J. Kramer, Phys. Rev. A 6, 2125 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    Dž. Belkić, R. Gayet, J. Hanssen, A. Salin, J. Phys. B 19, 2945 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Roberts, J. Phys. B 20, 551 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    S. Alston, Phys. Rev. A 42, 331 (1990)ADSCrossRefGoogle Scholar
  37. 37.
    C.J. Jochain, Quantum collision theory (Northern Holland Publishing Company, Oxford, 1975)Google Scholar
  38. 38.
    I. Mančev, Phys. Rev. A 60, 351 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    I. Mančev, Phys. Rev. A 64, 012708 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Dž. Belkić, R. Gayet, J. Hanssen, I. Mančev, A. Nuñez, Phys. Rev. A 56, 3675 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    K. Taulbjerg, J.S. Briggs, J. Phys. B 16, 3811 (1983)ADSCrossRefGoogle Scholar
  42. 42.
    I. Mančev, J. Phys. B 36, 93 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    I. Mančev, J. Comput. Methods Sci. Eng. 5, 73 (2005)Google Scholar
  44. 44.
    I. Mančev, Phys. Scr. 51, 762 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    D.P. Dewangan, B.H. Bransden, J. Phys. B 21, L353 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    A. Alessandrini, J. Math. Phys. 7, 215 (1966)ADSCrossRefGoogle Scholar
  47. 47.
    L. Rosenberg, Phys. Rev. 140, B217 (1965)ADSCrossRefGoogle Scholar
  48. 48.
    A.N. Mitra, J. Gillespie, R. Sugar, N. Panchapakesan, Phys. Rev. 140, B1336 (1965)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Takahashi, N. Mishima, Progr. Theor. Phys. (Kyoto) 34, 498 (1965)ADSCrossRefGoogle Scholar
  50. 50.
    N. Mishima, Y. Takahashi, Progr. Theor. Phys. (Kyoto) 35, 440 (1966)ADSCrossRefGoogle Scholar
  51. 51.
    J.H. Sloan, Phys. Rev. C 6, 6 (1972)Google Scholar
  52. 52.
    Z. Safarzade, F. Shojaei Akbarabadi, R. Fathi, M.J. Brunger, M.A. Bolorizadeh, Eur. Phys. J. Plus 132, 243 (2017)CrossRefGoogle Scholar
  53. 53.
    Z. Safarzade, R. Fathi, F. Shojaei Akbarabadi, M.A. Bolorizadeh, Eur. Phys. J. Plus 133, 140 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    J. Schwinger, J. Math. Phys. 5, 1606 (1964)ADSCrossRefGoogle Scholar
  55. 55.
    G.L. Nutt, J. Math. Phys. 9, 796 (1968)ADSCrossRefGoogle Scholar
  56. 56.
    C.S. Shastery, L. Kummar, J. Callaway, Phys. Rev. A 1, 1137 (1970)ADSCrossRefGoogle Scholar
  57. 57.
    J.C.Y. Chen, P.J. Kramer, Phys. Rev. Lett. 27, 899 (1971)ADSCrossRefGoogle Scholar
  58. 58.
    H. Bateman, Higher Transcendental Functions, vol. 1 (McGraw-Hill, New York, 1953)Google Scholar
  59. 59.
    J.C.Y. Chen, A.C. Chen, Adv. At. Mol. Phys. 8, 71 (1972)ADSCrossRefGoogle Scholar
  60. 60.
    M. Sadeghi, M.A. Bolorizadeh, E. GhanbariAdivi, J. Phys. B 43, 035203 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    M.A. Bolorizadeh, M. Sadeghi, F. Shojaei Akbarabadi, R. Fathi, M.J. Brunger, J. Phys. B 45, 165201 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zohre Safarzade
    • 1
  • Farideh Shojaei Akbarabadi
    • 2
  • Reza Fathi
    • 2
  • Michael J. Brunger
    • 3
  • Mohammad A. Bolorizadeh
    • 4
  1. 1.Department of Physics and PhotonicsGraduate University of Advanced TechnologyKermanIran
  2. 2.Faculty of PhysicsShahid Bahonar University of KermanKermanIran
  3. 3.School of Chemical and Physical SciencesFlinders UniversityAdelaideAustralia
  4. 4.Atomic and Molecular Physics Group, School of PhysicsYazd UniversityYazdIran

Personalised recommendations