Advertisement

Introducing a new family of short-range potentials and their numerical solutions using the asymptotic iteration method

  • I. A. Assi
  • A. J. Sous
Regular Article

Abstract.

The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.

References

  1. 1.
    F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001)Google Scholar
  2. 2.
    D.J. Griffiths, Introduction to Quantum Mechanics (Cambridge University Press, 2016)Google Scholar
  3. 3.
    C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, Vol. 1 (Wiley, New York, 1977) pp. 315--328Google Scholar
  4. 4.
    E. Witten, Int. J. Mod. Phys. A 19, 1259 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    A. Anderson, Phys. Rev. A 43, 4602 (1991)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G.V. Shishkin, V.M. Villalba, J. Math. Phys. 33, 2093 (1992)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A.V. Yurov, Phys. Lett. A 225, 51 (1997)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988)Google Scholar
  9. 9.
    T.D. Imbo, U.P. Sukhatme, Phys. Rev. Lett. 54, 2184 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    A.D. Alhaidari, Ann. Phys. 317, 152 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Alhaidari, H. Bahlouli, I.A. Assi, Phys. Lett. A 380, 1577 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    I.A. Assi, H. Bahlouli, J. Appl. Math. Phys. 5, 2072 (2017)CrossRefGoogle Scholar
  13. 13.
    I.A. Assi, H. Bahlouli, A.D. Alhaidari, AIP Conf. Proc. 1742, 030003 (2016)CrossRefGoogle Scholar
  14. 14.
    I.A. Assi, A.D. Alhaidari, H. Bahlouli, Commun. Theor. Phys. 69, 241 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    A.D. Alhaidari, J. Math. Phys. 59, 013503 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 36, 11807 (2003)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    I.A. Assi, A.J. Sous, A.N. Ikot, Eur. Phys. J. Plus 132, 525 (2017)CrossRefGoogle Scholar
  18. 18.
    A.J. Sous, J. Appl. Math. Phys 3, 1406 (2015)CrossRefGoogle Scholar
  19. 19.
    Abdullah J. Sous, Abdulaziz D. Alhaidari, J. Appl. Math. Phys. 4, 79 (2016)CrossRefGoogle Scholar
  20. 20.
    A.J. SOUS, Turk. J. Phys. 32, 123 (2008)ADSGoogle Scholar
  21. 21.
    A.D. Alhaidari, Phys. Scr. 81, 025013 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, arXiv:math/9602214 [math. CA]Google Scholar
  23. 23.
    G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Elsevier, 1999)Google Scholar
  24. 24.
    L. Hulthén, L. Hulthén, Ark. Mat. Astron. Fys. A 28, 5 (1942)MathSciNetGoogle Scholar
  25. 25.
    S.M. Ikhdair, R. Sever, J. Math. Chem. 42, 461 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Faculty of Technology and Applied SciencesAl-Quds Open UniversityNablusPalestine

Personalised recommendations