Advertisement

Dirac and Klein-Gordon oscillators on anti-de Sitter space

  • B. Hamil
  • M. Merad
Regular Article
  • 52 Downloads

Abstract.

The Dirac and Klein-Gordon oscillators on anti-de Sitter space were considered in a space with deformed commutation relations. Anti-de Sitter commutation relations give rise to the appearance of minimal uncertainty in the momentum. Using the position space representation, we determine the energy eigenvalues and the eigenfunctions for both cases. The wave functions can be given in terms of Gegenbauer polynomials. The high-temperature thermodynamic properties of the relativistic harmonic oscillators are then analyzed.

References

  1. 1.
    A. Kempf, J. Math. Phys. 35, 4483 (1994)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H.S. Snyder, Phys. Rev. 71, 38 (1947)ADSCrossRefGoogle Scholar
  3. 3.
    H.S. Snyder, Phys. Rev. 72, 68 (1947)ADSCrossRefGoogle Scholar
  4. 4.
    A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Kempf, G. Mangano, Phys. Rev. D 55, 7909 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    K. Konishi, G. Pauti, P. Provero, Phys. Lett. B 234, 276 (1990)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 39, 15 (2000)CrossRefGoogle Scholar
  8. 8.
    F. Scardigli, R. Casadio, Class. Quantum Grav. 20, 3915 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    S. Cacciatori, V. Gorini, A. Kamenshchik, U. Moschella, Class. Quantum Grav. 25, 075008 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    P. de Bernardis et al., Nature 404, 955 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    P.A.M. Dirac, Ann. Math. 35, 657 (1935)CrossRefGoogle Scholar
  13. 13.
    S. Mignemi, Mod. Phys. Lett. A 25, 1697 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    B. Bolen, M. Cavaglia, Gen. Relativ. Gravit. 37, 1255 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Mu-In Park, Phys. Lett. B 659, 698 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Ito, K. Mori, E. Carreri, Nuovo Cimento A 51, 1119 (1967)ADSCrossRefGoogle Scholar
  17. 17.
    M. Moshinsky, A. Szczepaniak, J. Phys. A: Math. Gen. 22, L817 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    A. Bermudez, M.A. Martin-Delgado, E. Solano, Phys. Rev. A 76, 041801 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J. Munarriz, F. Dominguez-Adame, R. Lima, Phys. Lett. A 376, 3475 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    C. Quesne, V.M. Tkachuk, J. Phys. A 38, 1747 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Z.Y. Luo, Q. Wang, X. Li, J. Jing, Int. J. Theor. Phys. 51, 2143 (2012)CrossRefGoogle Scholar
  22. 22.
    C. Quimbay, P. Strange, arXiv:1311.2021 (2013)Google Scholar
  23. 23.
    W.S. Chung, H. Hassanabadi, Mod. Phys. Lett. A 32, 1750138 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    M.H. Pacheco, R.R. Landim, C.A.S. Almeida, Phys. Lett. A 311, 93 (2003)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kh. Nouicer, J. Phys. A 39, 5125 (2006)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Falek, M. Merad, T. Birkandan, J. Math. Phys. 58, 023501 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de TC de SNVUniversité Hassiba BenboualiChlefAlgeria
  2. 2.Laboratoire (L.S.D.C), Faculté des Sciences ExactesUniversité de Oum El BouaghiOum El BouaghiAlgeria

Personalised recommendations