Electrochemical studies of mesoporous and copper-modified mesoporous TiO2 -anode material

Regular Article
  • 28 Downloads

Abstract.

Herein, we developed a method to synthesize highly ordered mesoporous TiO2 (MT) and copper-modified M- TiO2 (CMT) with a high surface area by the hydrothermal method using Pluronic P-123 as a surfactant at 150 ° C. CMT with different copper concentrations (0.1, 0.2 and 0.3%) was synthesized. The structural characterization studies revealed that MT and CMT particles are in anatase phase. The average particle size was found to be \( 24\pm 0.8\) nm for MT and that of CMT was \( 25\pm 0.6\) , \( 27\pm 0.4\) and \( 28\pm 0.3\) nm, respectively. The presence of ordered spherical MT and CMT particles with uniform size distribution was confirmed by performing morphological studies using FE-SEM. Optical absorption studies indicate the presence of copper because of the red shift in the band gap and also a broad peak around 800nm when compared with MT. EIS studies point out an increase in conductivity from MT through 0.3% CMT by a decrease in the charge transfer resistance. Further, charge-discharge studies were carried on this material at room temperature for lithium-ion battery applications. CMT with 0.3% copper showed high initial discharge capacity and better cyclability. The results indicate that this material can act as a promising negative electrode.

References

  1. 1.
    F.D. Fonzo, C.S. Casari, V. Russo, M.F. Brunella, A.L. Bassi, C.E. Bottani, Nanotechnology 20, 015604 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Liu, J.F. Wan, C.T. Liu, Y. Li, J. Mater. Sci. Tech. 32, 786 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, Y. Yang, J. Nanomater. 2016, 8123652 (2016)Google Scholar
  4. 4.
    O. Rhee, G. Lee, J. Choi, ACS Appl. Mater. Interfaces 8, 14558 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Xiao, W. Meng, S. Wang, D. Liu, D. Qu, Z. Xie, B. Deng, J. Liu, Nanotechnology 28, 265401 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    D. Wang, D. Choi, Z. Yang, V.V. Viswanathan, Z. Nie, C. Wang, Y. Song, J.G. Zhang, J. Liu, Chem. Mater. 20, 3435 (2008)CrossRefGoogle Scholar
  7. 7.
    D.S. Kim, S.Y. Kwak, Appl. Catal. A 323, 110 (2007)CrossRefGoogle Scholar
  8. 8.
    H.W. Shim, D.K. Lee, I.-S. Cho, K.S. Hong, D.-W. Kim, Nanotechnology 21, 255706 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Zhang, C.W. Foster, C.E. Banks, L. Shao, H. Hou, Z. Zou, J. Chen, Z. Huang, X. Ji, Adv. Mater. 28, 9391 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Gao, R. Liu, H. Hu, G. Li, Y. Yu, Nanotechnology 25, 175402 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zhou, Q. Zhu, J. Tian, F. Jiang, J. Nanomater. 7, 252 (2017)CrossRefGoogle Scholar
  12. 12.
    M.R. Ryder, J.C. Tan, J. Mater. Sci. Tech. 30, 1598 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, S. Xiong, Adv. Mater. 30, 1705788 (2018)CrossRefGoogle Scholar
  14. 14.
    Y.H. Xu, D.H. Liang, M.L. Liu, D.Z. Liu, Mater. Res. Bull. 43, 3474 (2008)CrossRefGoogle Scholar
  15. 15.
    G.H. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, J. Phys. Chem. C 112, 19040 (2008)CrossRefGoogle Scholar
  16. 16.
    J.C.S. Wu, Catal. Surv. Asia 13, 30 (2009)CrossRefGoogle Scholar
  17. 17.
    T. Froschl, U. Hormann, P. Kubiak, G. Kucerova, M. Pfanzelt, C.K. Weiss, R.J. Behm, N. Husing, U. Kaiser, K. Landfester, M.W. Mehren, Chem. Soc. Rev. 41, 5313 (2012)CrossRefGoogle Scholar
  18. 18.
    J. Briscoe, S. Dunn, J. Mater. Sci. Tech. 27, 1741 (2011)CrossRefGoogle Scholar
  19. 19.
    R.A. Kumar, V.G.V. Dutt, Ch. Rajesh, Eur. Phys. J. Plus 133, 60 (2018)CrossRefGoogle Scholar
  20. 20.
    Ch. Rajesh, C.V. Phadnis, K.G. Sonawane, S. Mahamuni, J. Exp. Nanosci. 10, 1082 (2015)CrossRefGoogle Scholar
  21. 21.
    Ch. Rajesh, C.V. Phadnis, K.G. Sonawane, S. Mahamuni, Phys. Scr. 90, 015803 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    F. Gonella, F. Caccavale, L. Bogomolova, F. D’Acapito, A. Quaranta, J. Appl. Phys. 83, 1200 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    J. Wang, Y. Zhou, Y. Hu, R.O. Hayre, Z. Shao, J. Phys. Chem. C 115, 2529 (2011)CrossRefGoogle Scholar
  24. 24.
    A.R. Gharakhlou, M.N. Sarvi, Mater. Res. Exp. 4, 025027 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Zhang, W. He, X. Zhang, X. Yang, J. Mater. Sci. 26, 2189 (2015)Google Scholar
  26. 26.
    M. Ara, V.R. Chitturi, S.O. Salley, K.Y.S. Ng, Electrochim. Acta 161, 269 (2015)CrossRefGoogle Scholar
  27. 27.
    X.H. Wang, C. Guan, L.M. Sun, R.A. Susantyoko, H.J. Fan, Q. Zhang, J. Mater. Chem. A 30, 15394 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao, F. Du, B. Zou, G. Chen, Y. Wei, ACS Appl. Mater. Interfaces 8, 7957 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Functional Materials Research Centre, Department of PhysicsKoneru Lakshmaiah Education FoundationAndhra PradeshIndia

Personalised recommendations