Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

Regular Article
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation


In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain \((-\infty, \infty)\), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.


  1. 1.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  2. 2.
    S.G. Samko, A.A. Kilbas, O.I. Maritchev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)Google Scholar
  3. 3.
    J. Smoller, Shock waves and reaction-diffusion equations, in Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) (Springer-Verlag, New York, 1994)Google Scholar
  4. 4.
    N.F. Britton, Reaction-Diffusion Equations and their Applications to Biology (Academic Press Inc, London, 1986)Google Scholar
  5. 5.
    P. Grindrod, The Theory and Applications of Reaction-Diffusion Equations, in Oxford Applied Mathematics and Computing Science Series (The Clarendon Press Oxford University Press, New York, 1996)Google Scholar
  6. 6.
    I.M. Sokolov, J. Klafter, Chaos 15, 26 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Bueno-Orovio, D. Kay, K. Burrage, BIT Numer. Math. 54, 937 (2014)CrossRefGoogle Scholar
  8. 8.
    K.M. Furati, M. Yousuf, A.Q.M. Khaliq, Int. J. Comput. Math. (2017),  https://doi.org/10.1080/00207160.2017.1404037
  9. 9.
    A.Q.M. Khaliq, X. Liang, K.M. Furati, Numer. Algorithms 75, 147 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    X. Liang, A.Q.M. Khaliq, H. Bhatt, K.M. Furati, Numer. Algorithms 76, 939 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. Pindza, K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 40, 112 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, Water Resour. Res. 39, 1022 (2003)ADSGoogle Scholar
  13. 13.
    H.W. Choi, S.K. Chung, Y.J. Lee, Bulletin of the Korean Mathematical Society 47, 1225 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Z. Deng, V.P. Singh, L. Bengtsson, J. Hydraul. Eng. 130, 422 (2004)CrossRefGoogle Scholar
  15. 15.
    M.M. Meerschaert, H.P. Scheffler, C. Tadjeran, J. Comput. Phys. 211, 249 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, J. Comput. Phys. 213, 205 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Tadjeran, M.M. Meerschaert, J. Comput. Phys. 220, 813 (2007)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Liu, V. Ahn, I. Turner, J. Comput. Appl. Math. 166, 209 (2004)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 80 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comput. 91, 12 (2007)Google Scholar
  21. 21.
    Q. Yang, F. Liu, I. Turner, Appl. Math. Modell. 34, 200 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, D.A. Benson, M.M. Meerschaert, H.P. Scheffler, J. Stat. Phys. 123, 89 (2006)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    V.J. Ervin, N. Heuer, J.P. Roop, SIAM J. Numer. Anal. 45, 572 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Roop, J. Comput. Appl. Math. 193, 243 (2006)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, M.G. López-López, V.M. Alvarado-Mart\'inez, J. Electromagn. Waves Appl. 30, 1937 (2016)CrossRefGoogle Scholar
  26. 26.
    J.F. Gómez-Aguilar, T. Córdova-Fraga, J. Tórres-Jiménez, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, G.V. Guerrero-Ram\'irez, Mathematical Problems in Engineering 2016, 7845874 (2016)CrossRefGoogle Scholar
  27. 27.
    J.F. Gómez-Aguilar, H. Yépez-Mart\'inez, J. Torres-Jiménez, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2017, 68 (2017)CrossRefGoogle Scholar
  28. 28.
    V.F. Morales-Delgado, J.F. Gómez-Aguilar, H. Yépez-Mart\'inez, D. Baleanu, R.F. Escobar-Jimenez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2016, 164 (2016)CrossRefGoogle Scholar
  29. 29.
    V.F. Morales-Delgado, M.A. Taneco-Hernández, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 132, 47 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Yépez-Mart\'inez, J.F. Gomez-Aguilar, I.O. Sosaa, J.M. Reyesa, J. Torres-Jimenez, Rev. Mex. Fis. 62, 310 (2016)Google Scholar
  31. 31.
    J.R. Cash, A.H. Karp, ACM Trans. Math. Softw. 16, 201 (1990)CrossRefGoogle Scholar
  32. 32.
    S. Krogstad, J. Comput. Phys. 203, 72 (2005)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)CrossRefGoogle Scholar
  34. 34.
    D. del Castillo-Negrete, B.A. Carreras, V.E. Lynch, Phys. Rev. Lett. 91, 018302 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    G.G. Katul, A. Porporato, R. Nathan, M. Siqueira, M.B. Soons, D. Poggi, H.S. Horn, S.A. Levin, Am. Nat. 166, 368 (2005)Google Scholar
  36. 36.
    E.K. Klein, C. Lavigne, H. Picault, M. Renard, P.H. Gouyon, J. Appl. Ecol. 43, 141 (2006)CrossRefGoogle Scholar
  37. 37.
    A. Atangana, A. Secer, Abstract and Applied Analysis 2013, 279681 (2013)Google Scholar
  38. 38.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Das, Functional Fractional Calculus, 2nd Edition (Springer-Verlag, 2011)Google Scholar
  41. 41.
    B. Guo, X. Pu, F. Huang, Fractional Partial Differential Equations and their Numerical Solutions (World Scientific, Singapore, 2011)Google Scholar
  42. 42.
    Y. Luchko, J. Comput. Phys. 293, 40 (2015)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Y. Luchko, R. Gorenflo, Acta Math. Vietnam 24, 207 (1999)MathSciNetGoogle Scholar
  44. 44.
    M.D. Ortigueira, Fractional Calculus for Scientists and Engineers (Springer, New York, 2011)Google Scholar
  45. 45.
    X.J. Yang, Advanced Local Fractional Calculus and its Applications (World Science Publisher, New York, 2012)Google Scholar
  46. 46.
    Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, New Jersey, 2014)Google Scholar
  47. 47.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  48. 48.
    K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Netherlands, 2007)Google Scholar
  50. 50.
    T. Bakkyaraj, R. Sahadevan, Nonlinear Dyn. 80, 447 (2015)CrossRefGoogle Scholar
  51. 51.
    E. Sousan, C. Li, Appl. Numer. Math. 90, 22 (2015)MathSciNetCrossRefGoogle Scholar
  52. 52.
    M.M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    K.M. Owolabi, A. Atangana, Chaos, Solitons Fractals 99, 171 (2017)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    J.F. Gómez-Aguilar, A. Atangana, Eur. Phys. J. Plus 132, 13 (2017)CrossRefGoogle Scholar
  55. 55.
    K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Dover Publication, New York, 2006)Google Scholar
  56. 56.
    H. Ye, J. Gao, Y. Ding, J. Math. Anal. Appl. 328, 1075 (2007)MathSciNetCrossRefGoogle Scholar
  57. 57.
    B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cambridge, 1998)Google Scholar
  58. 58.
    A.K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)MathSciNetCrossRefGoogle Scholar
  59. 59.
    K.M. Owolabi, K.C. Patidar, Int. J. Differ. Equ. 2015, 485860 (2015)Google Scholar
  60. 60.
    J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 2001)Google Scholar
  61. 61.
    L.N. Trefethen, Spectral Methods in MATLAB (SIAM Publications, Philadelphia, 2000)Google Scholar
  62. 62.
    J.A.C. Weideman, S.C. Reddy, Trans. Math. Softw. 26, 465 (2001)CrossRefGoogle Scholar
  63. 63.
    K.M. Owolabi, A. Atangana, J. Comput. Nonlinear Dyn. 12, 031010 (2017)CrossRefGoogle Scholar
  64. 64.
    B. Fornberg, Driscoll, J. Comput. Phys. 155, 456 (1999)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    K.M. Owolabi, K.C. Patidar, Appl. Math. Comput. 240, 30 (2014)MathSciNetGoogle Scholar
  66. 66.
    S.M. Cox, P.C. Matthews, J. Comput. Phys. 176, 430 (2002)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    H. Munthe-Kaas, Appl. Numer. Math. 29, 115 (1999)MathSciNetCrossRefGoogle Scholar
  68. 68.
    K.M. Owolabi, K.C. Patidar, Int. J. Nonlinear Sci. Numer. Simul. 15, 437 (2014)MathSciNetCrossRefGoogle Scholar
  69. 69.
    K.M. Owolabi, K.C. Patidar, Int. J. Nonlinear Sci. Numer. Simul. 17, 291 (2016)MathSciNetGoogle Scholar
  70. 70.
    M.D. Bramson, Commun. Pure Appl. Math. 31, 531 (1978)CrossRefGoogle Scholar
  71. 71.
    R.A. Fisher, Ann. Eugen. 7, 353 (1937)Google Scholar
  72. 72.
    S.M. Allen, J.W. Cahn, Acta Metall. 27, 1085 (1979)CrossRefGoogle Scholar
  73. 73.
    Z. Hu, S.M. Wise, C. Wang, J.S. Lowengrub, J. Comput. Phys. 228, 5323 (2009)ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    P. Huang, A. Abduwali, J. Appl. Math. Inf. 29, 1477 (2011)Google Scholar
  75. 75.
    K.M. Owolabi, K.C. Patidar, Transylvanian Rev. 24, 510 (2016)Google Scholar
  76. 76.
    J. Shen, X. Yang, AIMS Discr. Continuous Dyn. Syst. A 28, 1669 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesFederal University of TechnologyAkure, Ondo StateNigeria
  2. 2.Institute for Groundwater Studies, Faculty of NaturalAgricultural Sciences University of the Free StateBloemfonteinSouth Africa

Personalised recommendations