Skip to main content
Log in

Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work we extend the standard model for a cubic isothermal auto-catalytic chemical system (CIACS) to a new model of a fractional cubic isothermal auto-catalytic chemical system (FCIACS) based on Caputo (C), Caputo-Fabrizio (CF) and Atangana-Baleanu in the Liouville-Caputo sense (ABC) fractional time derivatives, respectively. We present approximate solutions for these extended models using the q -homotopy analysis transform method (q -HATM). We solve the FCIACS with the C derivative and compare our results with those obtained using the CF and ABC derivatives. The ranges of convergence of the solutions are found and the optimal values of h , the auxiliary parameter, are derived. Finally, these solutions are compared with numerical solutions of the various models obtained using finite differences and excellent agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.C. King, J. Billingham, S.R. Otto, Differential Equations: Linear, Nonlinear, Ordinary, Partial (Cambridge University Press, 2003)

  2. Qi. Yuanwei, Zhu Yi, Commun. Comput. Phys. 19, 1461 (2016)

    Article  MathSciNet  Google Scholar 

  3. K.M. Saad, Eman. H.F. AL-Sharif, Comparative study of a cubic autocatalytic reaction via different analysis methods, submitted to Discr. Contin. Dyn. Syst. Ser. S

  4. A. Alsaedi et al., J. Funct. Spaces 2016, 4626940 (2016)

    Google Scholar 

  5. A. Atangana, J.J. Nieto, Adv. Mech. Eng. (2015) https://doi.org/10.1177/1687814015613758

  6. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  7. A. Atangana, S.T.A. Badr, Entropy 17, 4439 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Atangana, S.T.A. Badr, Adv. Mech. Eng. (2015) https://doi.org/10.1177/1687814015591937

  9. A. Atangana, S.T.A. Badr, Arab. J. Geosci. 9, 8 (2016)

    Article  Google Scholar 

  10. J.F. Gomez-Aguilar et al., Entropy 17, 6289 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Atangana, D. Baleanu, Therm. Sci 20, 763 (2016)

    Article  Google Scholar 

  12. A. Atangana, D. Baleanu. arXiv:1602.03408 (2016)

  13. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  14. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  15. J.J. Nieto, J. Losada, Progr. Fract. Differ. Appl. 2, 87 (2015)

    Google Scholar 

  16. X.-J. Yang, F. Gao, H.M. Srivastava, Fractals 25, 1740002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Gao, Therm. Sci. 21, S11 (2017)

    Article  Google Scholar 

  18. X.-J. Yang, Therm. Sci. 21, 1161 (2017)

    Article  Google Scholar 

  19. X.-J. Yang, Therm. Sci. 21, S317 (2017)

    Article  Google Scholar 

  20. X.-J. Yang, Rom. Rep. Phys. 69, 118 (2017)

    Google Scholar 

  21. X.-J. Yang, J.A.T. Machado, D. Baleanu, Rom. Rep. Phys. 69, 115 (2017)

    Google Scholar 

  22. X.-J. Yang, H.M. Srivastava, J.A.T. Machado, Therm. Sci. 20, 753 (2017)

    Article  Google Scholar 

  23. X.-J. Yang, H.M. Srivastava, D.F.M. Torres, A. Debbouche, Therm. Sci. 21, S1 (2017)

    Article  Google Scholar 

  24. Devendra Kumar, Jagdev Singh, Dumitru Baleanu, Math. Methods Appl. Sci. 40, 5642 (2017)

    Article  MathSciNet  Google Scholar 

  25. K.M. Saad, E.H. AL-Shareef, Mohamed S. Mohamed, Xiao-Jun Yang, Eur. Phys. J. Plus 132, 23 (2017)

    Article  Google Scholar 

  26. M.A. El-Tawil, S.N. Huseen, Int. J. Appl. Math. Mech. 8, 51 (2012)

    Google Scholar 

  27. S.N. Huseen, S.R. Grace, M.A. El-Tawil, Int. J. Comput. Technol. 11, 2859 (2013)

    Google Scholar 

  28. O.S. Iyiola, Asian J. Curr. Eng. Math. 2, 283 (2013)

    MathSciNet  Google Scholar 

  29. S.-J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University (1992)

  30. S.-J. Liao, Beyond perturbation: introduction to the homotopy analysis method (Chapman and Hall/CRC Press, Boca Raton, 2003)

  31. S.-J. Liao, Appl. Math. Comput. 147, 499 (2004)

    MathSciNet  Google Scholar 

  32. S.-J. Liao, Appl. Math. Comput. 169, 1186 (2005)

    MathSciNet  Google Scholar 

  33. Mohamed S. Mohamed, Yasser S. Hamed, Results Phys. 6, 20 (2016)

    Article  ADS  Google Scholar 

  34. K.M. Saad, A.A. AL-Shomrani, J. Fractional Calculus Appl. 7, 61 (2016)

    MathSciNet  Google Scholar 

  35. D. Baleanu, A. Atangana, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  36. I. Koca, A. Atangana, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Abbasbandy, M. Jalili, Numer. Algorithms 64, 593 (2013)

    Article  MathSciNet  Google Scholar 

  38. S. Abbasbandy, E. Shivanian, Commun. Nonlinear Sci. Numer. Simulat. 16, 2456 (2011)

    Article  ADS  Google Scholar 

  39. S.M. Abo-Dahab, Mohamed S. Mohamed, T.A. Nofal, Abstr. Appl. Anal. 2013, 614874 (2013)

    Article  Google Scholar 

  40. M. Ghanbari, S. Abbasbandy, T. Allahviranloo, Appl. Comput. Math. 12, 355 (2013)

    MathSciNet  Google Scholar 

  41. M.A. Gondal, A.S. Arife, M. Khan, I. Hussain, World Appl. Sci. J. 14, 1786 (2011)

    Google Scholar 

  42. S.-J. Liao, Commun. Nonlinear Sci. Numer. Simul. 15, 2003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Singh, D. Kumar, R. Swroop, Alex. Eng. J. 55, 1753 (2016)

    Article  Google Scholar 

  44. J. Singh, D. Kumar, R. Swroop, S. Kumar, Neural Comput. Appl. (2017) https://doi.org/10.1007/s00521-017-2909-8

  45. H.M. Srivastava, D. Kumar, J. Singh, Appl. Math. Model. 45, 192 (2017)

    Article  MathSciNet  Google Scholar 

  46. M. Yamashita, K. Yabushita, K. Tsuboi, J. Phys. A 40, 8403 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Saad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, K.M. Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system. Eur. Phys. J. Plus 133, 94 (2018). https://doi.org/10.1140/epjp/i2018-11947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11947-6

Navigation