Advertisement

A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel

  • Devendra KumarEmail author
  • Jagdev Singh
  • Dumitru Baleanu
Regular Article
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation

Abstract.

The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.

References

  1. 1.
    G.B. Whitham, Proc. R. Soc. A 299, 6 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    B. Fornberg, G.B. Whitham, Phil. Trans. R. Soc. London A 289, 373 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)Google Scholar
  4. 4.
    L. Debnath, Frac. Calc. Appl. Anal. 6, 119 (2003)Google Scholar
  5. 5.
    M. Caputo, Elasticità e Dissipazione (Zanichelli, Bologna, 1969)Google Scholar
  6. 6.
    J. Singh, D. Kumar, J.J. Nieto, Entropy 18, 206 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    H.M. Srivastava, D. Kumar, J. Singh, Appl. Math. Model 45, 192 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    P.K. Gupta, M. Singh, Comput. Math. Appl. 61, 250 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M.G. Saker, F. Erdogan, A. Yildirim, Comput. Math. Appl. 63, 1382 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Merdan, A. Gökdoğan, A. Yildirim, S.T. Mohyud-Din, Abstr. Appl. Anal. 2012, 965367 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Singh, D. Kumar, S. Kumar, Ain Shams Eng. J. 4, 557 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  13. 13.
    A. Atangana, B.T. Alkahtani, Chaos, Solitons Fractals 89, 566 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Singh, D. Kumar, J.J. Nieto, Chaos, Solitons Fractals 99, 109 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Singh, D. Kumar, M.A. Qurashi, D. Baleanu, Adv. Differ. Equ. 2017, 88 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  17. 17.
    D. Kumar, J. Singh, D. Baleanu, Physica A 492, 155 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Singh, D. Kumar, D. Baleanu, Chaos 27, 103113 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Baleanu, A. Jajarmi, M. Hajipour, J. Optim. Theory Appl. 175, 718 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Kluwer Academic Publishers, Boston, 1994)Google Scholar
  21. 21.
    Z. Odibat, S. Momani, Appl. Math. Model. 32, 28 (2008)CrossRefGoogle Scholar
  22. 22.
    D. Kumar, J. Singh, A. Kilicman, Abstr. Appl. Anal. 2013, 608943 (2013)CrossRefGoogle Scholar
  23. 23.
    D. Kumar, J. Singh, D. Baleanu, J. Comput. Nonlinear Dyn. 11, 061004 (2016)CrossRefGoogle Scholar
  24. 24.
    S.A. Khuri, J. Appl. Math. 1, 141 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    D. Baleanu, G.C. Wu, S.D. Zeng, Chaos, Solitons Fractals 102, 99 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    G.C. Wu, D. Baleanu, H.P. Xie, Chaos 26, 084308 (2016)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J.S. Duan, Appl. Math. Comput. 217, 6337 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Atangana, Appl. Math. Model. 39, 2909 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Atangana, E.F.D. Goufo, J. Nonlinear Sci. Appl. 8, 763 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Atangana, J.F. Gómez-Aguilar, Phys. A 476, 1 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Devendra Kumar
    • 1
    Email author
  • Jagdev Singh
    • 1
  • Dumitru Baleanu
    • 2
    • 3
  1. 1.Department of MathematicsJECRC UniversityRajasthanIndia
  2. 2.Department of Mathematics, Faculty of Arts and SciencesCankaya UniversityEtimesgutTurkey
  3. 3.Institute of Space SciencesBucharestRomania

Personalised recommendations