An application of the Caputo-Fabrizio operator to replicator-mutator dynamics: Bifurcation, chaotic limit cycles and control

  • Emile Franc Doungmo GoufoEmail author
Regular Article
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation


The physical behaviors of replicator-mutator processes found in theoretical biophysics, physical chemistry, biochemistry and population biology remain complex with unlimited expressibility. People languages, for instance, have impressively and unpredictably changed over the time in human history. This is mainly due to the collection of small changes and collaboration with other languages. In this paper, the Caputo-Fabrizio operator is applied to a replicator-mutator dynamic taking place in midsts with movement. The model is fully analyzed and solved numerically via the Crank-Nicolson scheme. Stability and convergence results are provided. A concrete application to replicator-mutator dynamics for a population with three strategies is performed with numerical simulations provided for some fixed values of the physical position of the population symbolized by r and the grid points. Physically, it happens that limit cycles appear, not only in function of the mutation parameter μ but also in function of the values given to r . The amplitudes of limit cycles also appear to be proportional to r but the stability of the system remains unaffected. However, those limit cycles instead of disappearing as expected, are immediately followed by chaotic and unpredictable behaviors certainly due to the non-singular kernel used in the model and suitable to non-linear dynamics. Hence, the appearance and disappearance of limit cycles might be controlled by the position variable r which can also apprehend chaos.


  1. 1.
    N.L. Komarova, J. Theor. Biol. 230, 227 (2004)CrossRefGoogle Scholar
  2. 2.
    W.G. Mitchener, M.A. Nowak, Proc. R. Soc. London B 271, 701 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Nowak, K. Sigmund, Proc. Natl. Acad. Sci. 90, 5091 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    D. Pais, N.E. Leonard, Limit cycles in replicator-mutator network dynamics, in 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE2011 (IEEE, 2011) pp. 3922--3927Google Scholar
  5. 5.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Apppl. 1, 73 (2015)Google Scholar
  6. 6.
    E.F. Doungmo Goufo, Chaos 26, 084305 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Bürger, Genetica 102, 279 (1998)CrossRefGoogle Scholar
  8. 8.
    J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, 1998)Google Scholar
  9. 9.
    N.L. Komarova, P. Niyogi, M.A. Nowak, J. Theor. Biol. 209, 43 (2001)CrossRefGoogle Scholar
  10. 10.
    P.F. Stadler, P. Schuster, J. Math. Biol. 30, 597 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Caputo, Geophys. J. Int. 13, 529 (1967)ADSCrossRefGoogle Scholar
  12. 12.
    E.F. Doungmo Goufo, J. Theor. Biol. 403, 178 (2016)CrossRefGoogle Scholar
  13. 13.
    E. Hanert, Comput. Fluids 46, 33 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Khan, K. Sayevand, M. Fardi, M. Ghasemi, Appl. Math. Comput. 249, 229 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Losada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  16. 16.
    E.F. Doungmo Goufo, Math. Model. Anal. 21, 188 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    E.F. Doungmo Goufo, A. Atangana, Eur. Phys. J. Plus 131, 269 (2016)CrossRefGoogle Scholar
  18. 18.
    E.F. Doungmo Goufo, Chaos, Solitons Fractals 104, 443 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, B.M.V. Jara, J. Comput. Phys. 228, 3137 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Kumar, A. Kumar, Z.M. Odibat, Math. Methods Appl. Sci. 40, 4134 (2017)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Lin, F. Liu, V. Anh, I. Turner, Appl. Math. Comput. 212, 435 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M.M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, J. Comput. Phys. 213, 205 (2006)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Liu, Z. Fang, H. Li, S. He, Appl. Math. Comput. 243, 703 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y. Zhang, Appl. Math. Comput. 215, 524 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Zhuang, F. Liu, V. Anh, I. Turner, SIAM J. Numer. Anal. 47, 1760 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Kumar, S. Kumar, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.
  29. 29.
    A. Kumar, S. Kumar, S.P. Yan, Fundam. Inform. 151, 213 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Khan, S.P. Ali Beik, K. Sayevand, A. Shayganmanesh, Quaest. Math. 38, 41 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    X.-J. Yang, D. Baleanu, Y. Khan, S. Mohyud-Din, Rom. J. Phys. 59, 36 (2014)Google Scholar
  32. 32.
    Y. Khan, M. Fardi, K. Sayevand, M. Ghasemi, Neural Comput. Appl. 24, 187 (2014)CrossRefGoogle Scholar
  33. 33.
    C.-M. Chen, F. Liu, I. Turner, V. Anh, J. Comput. Phys. 227, 886 (2007)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    S.B. Yuste, L. Acedo, SIAM J. Numer. Anal. 42, 1862 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, in Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 43 (Cambridge University Press, 1947) pp. 50--67Google Scholar
  36. 36.
    C. Li, C. Tao, Comput. Math. Appl. 58, 1573 (2009)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K. Diethelm, N.J. Ford, A.D. Freed, Numer. Algorithms 36, 31 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of South AfricaFloridaSouth Africa

Personalised recommendations