Advertisement

UV photo-responsivity of a large-area MWCNT-Si photodetector operated at cryogenic temperature

  • Carmela Bonavolontà
  • Carla Aramo
  • Michelangelo Ambrosio
  • Maurizio Boscardin
  • Lucia Consiglio
  • Michele Crivellari
  • Emanuele Fiandrini
  • Maurizio Passacantando
  • Sandro Santucci
  • Massimo Valentino
Regular Article

Abstract.

In the last decades much effort has been addressed to realize novel solid state photo-detectors with a high quantum efficiency in the UV wavelength region to be used in experiments detecting Cherenkov or fluorescence radiation even at cryogenic temperatures. Among the possible devices with these characteristics, the large-area solid detectors made of n-doped silicon substrate coated with Multi-Walled Carbon Nanotubes (MWCNTs) appear to be particularly promising since they combine the great UV radiation absorbance of MWCNTs (at about 200 nm) with their unique characteristics for electrical conductivity and mechanical resistance at low temperatures. In this work we present the cryogenic characteristics of a MWCNT-Si large-area (1 cm2) photo-detector, in which a UV photo-sensitive heterojunction is obtained growing, by Chemical Vapour Deposition (CVD), multi-walled carbon nanotubes on an n-type silicon substrate. Measurements have been made at various temperatures in the range from 5K to 300K by illuminating the photo-detector with a 378 nm UV continuous laser light source. Results demonstrate the capability of such device to be successfully employed in cryogenic experiments as well at room temperature with high stability and high photon detection efficiency in the UV region.

References

  1. 1.
    I.M. Xu, Infrared Phys. Technol. 42, 485 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    M.E. Itkis, Science 312, 413 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M. Passacantando et al., Appl. Phys. Lett. 93, 051911 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ambrosio et al., Nucl. Instrum. Methods A 589, 398 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    U. Coscia et al., Solid State Sci. 11, 1806 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S. Iijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    S. Iijima, T. Ichihashi, Nature 363, 603 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, 1998)Google Scholar
  9. 9.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2003)Google Scholar
  10. 10.
    M. Meyyappan, Carbon Nanotubes Science and Applications (CRC Press, 2005)Google Scholar
  11. 11.
    C. Aramo et al., Beilstein J. Nanotechnol. 6, 704 (2015)CrossRefGoogle Scholar
  12. 12.
    C. Aramo et al., Nucl. Instrum. Methods A 845, 12 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    CTA Collaboration, Astropart. Phys. 43, 3 (2013)CrossRefGoogle Scholar
  14. 14.
    Pierre Auger Collaboration, Nucl. Instrum. Methods A 620, 227 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P. Buzhan et al., Nucl. Instrum. Methods A 504, 48 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    L. Capparelli et al., Nucl. Instrum. Methods A 9-10, 24 (2015)Google Scholar
  17. 17.
    A. Tinti et al., Nucl. Instrum. Methods A 629, 377 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Passacantando, V. Grossi, S. Cantucci, Appl. Phys. Lett. 100, 163119 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A. Ambrosio et al., J. Instrum. 7, P08013 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Naeemi A., J.D. Meindl, IEEE Electron Dev. Lett. 28, 135 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    M. Ambrosio et al., Nucl. Instrum. Methods A 610, 1 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C. Douglas Giancoli, Physics, 4th edition (Prentice Hall, 1995)Google Scholar
  23. 23.
    A.G. Chiariello, A. Maffucci, G. Miano, IEEE Trans. Electromagn. Compat. 54, 158 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carmela Bonavolontà
    • 1
  • Carla Aramo
    • 1
  • Michelangelo Ambrosio
    • 1
  • Maurizio Boscardin
    • 2
  • Lucia Consiglio
    • 1
  • Michele Crivellari
    • 2
  • Emanuele Fiandrini
    • 3
  • Maurizio Passacantando
    • 4
  • Sandro Santucci
    • 4
  • Massimo Valentino
    • 1
    • 5
  1. 1.INFNSezione di NapoliNapoliItaly
  2. 2.Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK)TrentoItaly
  3. 3.INFN, Sezione di Perugia, Dip. di FisicaUniversità degli Studi di PerugiaPerugiaItaly
  4. 4.INFN Sezione di L’Aquila, Dip. di Scienze Fisiche e ChimicheUniversità degli Studi dell’AquilaL’AquilaItaly
  5. 5.CNR-ISASIPozzuoliItaly

Personalised recommendations