Advertisement

Higher-order supersymmetric partners of generalized quantum nonlinear oscillators

  • Axel Schulze-Halberg
  • Barnana Roy
Regular Article

Abstract.

We apply an extended version of the quantum-mechanical supersymmetry (SUSY) formalism to a generalized quantum nonlinear oscillator model. Considering both the standard and the inverted version of quantum nonlinear oscillator, we use SUSY transformations of various orders to generate partner systems, focusing on regular potentials and spectral modifications.

References

  1. 1.
    E. Witten, Nucl. Phys. B 188, 513 (1981)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer Science and Business Media, Berlin, 1996)Google Scholar
  3. 3.
    F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    B.K. Bagchi, Supersymmetry in Quantum and Classical Mechanics (Chapman, Boca Raton, 2001)Google Scholar
  5. 5.
    G. Darboux, C. R. Acad. Sci. Paris 94, 1456 (1882)Google Scholar
  6. 6.
    V.V. Matveev, M.A. Salle, Darboux transformations and solitons, in Springer Series in Nonlinear Dynamics (Springer, New York, 1991)Google Scholar
  7. 7.
    E. Schrödinger, Proc. R. Irish. Acad. A 46, 9 (1940)Google Scholar
  8. 8.
    L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)ADSCrossRefGoogle Scholar
  9. 9.
    C.V. Sukumar, J. Phys. A 18, 2917 (1985)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A.A. Andrianov, M.V. Ioffe, V.P. Spiridonov, Phys. Lett. A 174, 273 (1993)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A.A. Andrianov et al., Int. J. Mod. Phys. A 10, 2683 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    H. Aoyama, M. Sato, T. Tanaka, Nucl. Phys. B 619, 105 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    M.V. Ioffe, D.N. Nishnianidze, Phys. Lett. A 327, 425 (2004)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D.J. Fernández, N. Fernández-García, AIP Conf. Proc. 744, 236 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Mateo, J. Negro, J. Phys. A 41, 045204 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    V.G. Bagrov, B.F. Samsonov, Phys. Part. Nucl. 28, 374 (1997)CrossRefGoogle Scholar
  17. 17.
    D.J. Fernández, R. Muñoz, A. Ramos, Phys. Lett. A 308, 11 (2003)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.A. Andrianov, M.V. Ioffe, J. Phys. A 45, 503001 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    D.J. Fernández, E. Salinas-Hernández, J. Phys. A 36, 2537 (2003)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D.J. Fernández, E. Salinas-Hernández, Phys. Lett. A 338, 13 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Bermúdez, D.J. Fernández, N. Fernández-García, Phys. Lett. A 375, 692 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Schulze-Halberg, Eur. Phys. J. Plus 128, 17 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Contreras-Astorga, A. Schulze-Halberg, Ann. Phys. 354, 353 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Fernández, E. Salinas-Hernández, J. Phys. A 44, 365302 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Contreras-Astorga, A. Schulze-Halberg, J. Phys. A 48, 315202 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Contreras-Astorga, A. Schulze-Halberg, J. Phys. A 50, 105301 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    D. Bermúdez, Ann. Phys. 364, 35 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Grandati, C. Quesne, SIGMA 11, 61 (2015)Google Scholar
  29. 29.
    A. Contreras-Astorga, A. Schulze-Halberg, J. Math. Phys. 55, 103506 (2014)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Contreras-Astorga, D.J. Fernández, J. Phys. A 41, 475303 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Correa, V. Jakubsky, M. Plyushchay, Phys. Rev. A 92, 023839 (2015)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Schulze-Halberg, J. Wang, Symmetry 7, 412 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    M.F. Rañada, J. Math. Phys. 55, 082108 (2014)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    P.M. Mathews, M. Lakshmanan, Quart. Appl. Math. 32, 215 (1974)MathSciNetCrossRefGoogle Scholar
  35. 35.
    P.M. Mathews, M. Lakshmanan, Nuovo Cimento A 26, 299 (1975)ADSCrossRefGoogle Scholar
  36. 36.
    M. Lakshmanan, K. Eswaran, J. Phys. A 8, 1658 (1975)ADSCrossRefGoogle Scholar
  37. 37.
    A. Schulze-Halberg, J. Wang, J. Math. Phys. 56, 072106 (2015)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P.W. Higgs, J. Phys. A 12, 309 (1979)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    H.I. Leemon, J. Phys. A 12, 489 (1979)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.F. Cariñena, M.F. Rañada, M. Santander, M. Senthilvelan, Nonlinearity 17, 1941 (2004)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    J.F. Cariñena, M.F. Rañada, M. Santander, Ann. Phys. 322, 2249 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    B. Midya, B. Roy, J. Phys. A 42, 28530 (2009)CrossRefGoogle Scholar
  43. 43.
    A. Schulze-Halberg, J. Morris, J. Phys. A 45, 305301 (2012)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    J.F. Cariñena, M.F. Rañada, M. Santander, J. Math. Phys. 48, 102106 (2007)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Schulze-Halberg, J. Morris, J. Math. Phys. 54, 112107 (2013)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Schulze-Halberg, B. Roy, J. Math. Phys. 54, 122104 (2013)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    A. Schulze-Halberg, B. Roy, J. Math. Phys. 57, 102103 (2016)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    C. Yuce, A. Kilic, A. Coruh, Phys. Scr. 74, 114 (2006)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    A. Schulze-Halberg, E. Pozdeeva, A. Suzko, J. Phys. A 42, 115211 (2009)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    A. Schulze-Halberg, Internat. J. Mod. Phys. A 21, 1359 (2006)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    G. Barton, Ann. Phys. 166, 322 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1964)Google Scholar
  53. 53.
    D.J. Fernández, AIP Conf. Proc. 1287, 3 (2010)Google Scholar
  54. 54.
    V.G. Bagrov, B.F. Samsonov, Theor. Math. Phys. 104, 1051 (1995)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Actuarial Science and Department of PhysicsIndiana University NorthwestGaryUSA
  2. 2.Physics and Applied Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations