Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel

  • J. F. Gómez-Aguilar
  • R. F. Escobar-Jiménez
  • M. G. López-López
  • V. M. Alvarado-Martínez
Regular Article


In this paper, the two-dimensional projectile motion was studied; for this study two cases were considered, for the first one, we considered that there is no air resistance and, for the second case, we considered a resisting medium k . The study was carried out by using fractional calculus. The solution to this study was obtained by using fractional operators with power law, exponential decay and Mittag-Leffler kernel in the range of \( \gamma \in (0,1]\) . These operators were considered in the Liouville-Caputo sense to use physical initial conditions with a known physical interpretation. The range and the maximum height of the projectile were obtained using these derivatives. With the aim of exploring the validity of the obtained results, we compared our results with experimental data given in the literature. A multi-objective particle swarm optimization approach was used for generating Pareto-optimal solutions for the parameters k and \( \gamma\) for different fixed values of velocity v0 and angle \( \theta\) . The results showed some relevant qualitative differences between the use of power law, exponential decay and Mittag-Leffler law.


  1. 1.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)Google Scholar
  2. 2.
    I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, 1998)Google Scholar
  3. 3.
    S. Kumar, A. Kumar, D. Baleanu, Nonlinear Dyn. 85, 699 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Chen, Y. Liang, X. Hei, Fractional Calc. Appl. Anal. 19, 1250 (2016)MathSciNetGoogle Scholar
  5. 5.
    G.A. Anastassiou, I.K. Argyros, S. Kumar, Fundam. Inform. 151, 241 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Kumar, S. Kumar, S.P. Yan, Fundam. Inform. 151, 213 (2017)CrossRefGoogle Scholar
  7. 7.
    T.A. Nadzharyan, V.V. Sorokin, G.V. Stepanov, A.N. Bogolyubov, E.Y. Kramarenko, Polymer 92, 179 (2016)CrossRefGoogle Scholar
  8. 8.
    P. Agarwal, J. Choi, R.B. Paris, J. Nonlinear Sci. Appl. 8, 451 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Agarwal, J.J. Nieto, Open Math. 13, 537 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    I.O. Kiymaz, A. Cetinkaya, P. Agarwal, J. Nonlinear Sci. Appl. 9, 3611 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    W. Chen, G. Pang, J. Comput. Phys. 309, 350 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Z.B. Vosika, G.M. Lazovic, G.N. Misevic, J.B. Simic-Krstic, PloS ONE 8, e59483 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)Google Scholar
  14. 14.
    M. Caputo, Boll. Geofis. Teor. Appl. 54, 217 (2013)Google Scholar
  15. 15.
    B. Duan, Z. Zheng, W. Cao, J. Comput. Phys. 319, 108 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Ito, B. Jin, T. Takeuchi, Appl. Math. Lett. 47, 43 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Coronel-Escamilla, J.F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, M.M. Al-Qurashi, Entropy 19, 55 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    M. Caputo, M. Fabricio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  19. 19.
    J. Lozada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  20. 20.
    A. Atangana, B.S.T. Alkahtani, Entropy 17, 4439 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  22. 22.
    A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 8 (2016)CrossRefGoogle Scholar
  23. 23.
    J.F. Gómez-Aguilar, H. Yépez-Martínez, C. Calderón-Ramón, I. Cruz-Orduña, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Entropy 17, 6289 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1687814015613758 (2015)Google Scholar
  25. 25.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Atangana, D. Baleanu, Model. Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  27. 27.
    B.S.T. Alkahtani, Chaos, Solitons Fractals 89, 547 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, M.G. López-López, V.M. Alvarado-Martínez, J. Electromagn. Waves Appl. 30, 1937 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Ebaid, Appl. Math. Modell. 35, 1231 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Ahmad, H. Batarfi, J.J. Nieto, Ó. Otero-Zarraquiños, W. Shammakh, Adv. Differ. Equ. 2015, 63 (2015)CrossRefGoogle Scholar
  32. 32.
    J.J. Rosales, M. Guía, F. Gómez, F. Aguilar, J. Martínez, Cent. Eur. J. Phys. 12, 517 (2014)Google Scholar
  33. 33.
    M.J. Reddy, D. Nagesh Kumar, Hydrol. Process. 21, 2897 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fís. 58, 348 (2012)Google Scholar
  35. 35.
    C. Kittel, W. Knight, M. Ruderman, K. Helmholz, B. Moyer, Mechanics (Berkeley Physics Course), Vol. 1 (McGraw Hill, 1973)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CONACyT-Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/N, Col. PalmiraCuernavacaMexico
  2. 2.Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/N, Col. PalmiraCuernavacaMexico

Personalised recommendations